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Abstract
Real-world dynamical systems with retardation effects are described in general
not by a single, precisely defined time delay, but by a range of delay times. An
exact mapping onto a set of N+ 1 ordinary differential equations exists when
the respective delay distribution is given in terms of a gamma distribution with
discrete exponents. The number of auxiliary variables one needs to introduce,
N, is inversely proportional to the variance of the delay distribution. The case
of a single delay is therefore recovered when N→∞. Using this approach,
denoted here the ‘kernel series framework’, we examine systematically how
the bifurcation phase diagram of the Mackey–Glass system changes under the
influence of distributed delays. We find that local properties, f.i. the locus of
a Hopf bifurcation, are robust against the introduction of broadened memory
kernels. Period-doubling transitions and the onset of chaos, which involve
non-local properties of the flow, are found in contrast to be more sensitive to
distributed delays. In general, the observed effects are found to scale as 1/N.
Furthermore, we consider time-delayed systems exhibiting chaotic diffusion,
which is present in particular for sinusoidal flows.We find that chaotic diffusion
is substantially more pronounced for distributed delays. Our results indicate in
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consequence that modeling approaches of real-world processes should take the
effects of distributed delay times into account.

Keywords: delay differential equation, distributed time delay,
kernel series framework, time delay kernel, kernel width,
gamma distributed time delay kernel, linear chain trick

(Some figures may appear in colour only in the online journal)

1. Introduction

On a fundamental level, all known laws of nature are strictly Markovian. An example is the
Schrödinger equation, ℏψ̇(x, t) = Hψ(x, t), which describes a complex-valued dynamical sys-
tem for which the time evolution is fully determined by the current state of the system, the
wavefunction ψ(x, t). There is no memory. In contrast, delayed effects often emerge in the
context of macroscopic processes. The study of effective models containing time delays is
hence an important subject [1].

The vast majority of studies dedicated to time delayed systems assume that the delay T
is accurately defined [2, 3], with T being either constant or functionally dependent on time,
e.g. containing a periodic modulation [4]. Strictly speaking, time delays are however never
precisely defined. Consider a dynamical variable x(t) whose time evolution is influenced by
past states, say by x(t−T). For this to be possible, the past trajectory must be stored, either
explicitly or implicitly, via suitable physical, chemical, or biophysical processes. Memory
formation takes however time, which implies that only a washed-out version of the past will
be available. Mathematically, the system is hence described not by a fixed time delay, but by
distributed time delays.

The broadening of the memory kernel may be disregarded when it is small, which is achiev-
able in particular for technical systems [5]. For natural systems [6], distributed time delays are
however prominent. This is well known for epidemic spreading, which can be modeled on a
realistic level only with distributed delays [7, 8]. The underlying reason is that biological pro-
cesses, like incubation and recovery times, are intrinsically variable. A corresponding obser-
vation holds for the interaction between tumors and the immune systems [9], or for the delayed
responses intrinsic to predator-prey models [10].

It is well-known that dynamical systems with distributed time delays can be mapped onto
sets of ordinary differential equations (ODEs) using the so-called ‘linear chain trick’ (see, e.g.
[11–14]). The resulting ODE system takes a particular simple formwhen the distribution of the
delays is described by a gamma distribution with integer exponents. This method, which we
denote here the ‘kernel series framework’, allows for the systematic study of delay differential
equations (DDEs) with distributed delays and the influence of broadened memory kernels. It
is closely related to previous work in the context of integro-differential equations [15], non-
reducible distributed delays [16] and threshold delay systems [17].

For the case of a DDE with discrete time delays, the kernel series framework provides an
approximation scheme via a set of N+1 ODEs. This approximation is systematic in the sense
that the original DDE is recovered in the limitN→∞, with the differences scaling as 1/N. The
kernel series framework allows hence to study delay systems with publicly available scientific
software libraries, which contain solvers typically only for sets of ODEs, but not for delay
systems.
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The method is reviewed in section 2, where we show that a finite orderN of the kernel series
corresponds to a delay distribution with a relative width 1/

√
N. Subsequently, in section 3,

we study analytically and numerically first the delay-induced Hopf bifurcation and then the
properties of a prototypical delay dynamical system, the Mackey–Glass system. Comparing
the original DDE with the corresponding kernel series framework, we find distinct differences
between the local and the global regime. For a good description of the Hopf bifurcation, which
depends on local properties of the flow, only a modest number of auxiliary variables is needed,
which implies that local bifurcations are robust with respect to washed-out memory kernels.

Period-doubling transitions and delay-induced chaos are phenomena that depend on non-
local properties of the flow. In this regime, the global regime, in part substantial differences
between DDEs with a single time delay and systems with distributed delays are observed.
Even for larger N, of the order of a few hundred, both the respective bifurcation points and
the topology of the resulting attractors may differ noticeably. This result has important con-
sequences for applications. Globally stabilized dynamical states observed for delay systems
in the limiting case of precisely defined time delays may not be present in the corresponding
real-world systems characterized by distributed time delays.

In section 4, we discuss the extension of the kernel series framework to general time-delay
distributions. Afterwards, in section 5, we consider an application to a system exhibiting dif-
fusive chaotic dynamics, finding that chaotic diffusion is substantially enhanced for distributed
delays.

2. Kernel series framework

The dynamics of a dynamical system with time delays depends on its history h(t), as defined
by

ẋ(t) = F(t,x(t),h(t)) , (1)

where x(t) is the primary dynamical variable and F a given function. For a DDE with a single
time delay T one has h(t) = x(t−T). In general, the memory h(t) is given by a superposition
of past states x(t− τ),

h(t) =
ˆ ∞

0
x(t− τ)K(τ)dτ,

ˆ ∞

0
K(τ)dτ = 1 , (2)

where K(τ)⩾ 0 is the time delay kernel. A single time delay of size T is present for K(τ) =
δ(τ −T).

We concentrate mostly on time delay kernels based on the probability density of the gamma
distribution. Later on, in section 4, the general case will be treated. For a given number N> 0,
the order of the framework, we define N kernels

K(N,T)
m (τ) =

Nm

(m− 1)!Tm

[
τm−1e−Nτ/T

]
, m= 1, . . . ,N , (3)

which correspond to a set of N normalized gamma distributions. Mean and variance are

µ=
mT
N
, σ2 =

mT2

N2
,

σ

µ
=

1√
m
, (4)

which implies that

lim
N→∞

K(N,T)
N (t) = δ(t−T) . (5)
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Figure 1. The probability densities of K(N,T)
m (τ), as defined by (3), for T = 10, together

with N= 500 (red lines), N= 1000 (green lines) and N= 3000 (blue lines). The four
peaks observable for eachN correspond respectively tom/N= 1.0, 0.75, 0.5, 0.25 (pro-
gressively shaded lines correspond to distinct m/N). The width of the peaks scale as
1/

√
m, see (4). The kernels converge to the Dirac delta distributions δ(τ −mT/N) in

the limit N→∞.

An illustration of the kernel series is given in figure 1. One observes that the densities converge
to a δ-function for N→∞when the ratiom/N is kept fixed, in agreement with (4). For a given
memory h(t), distributed by a gamma-shaped delay kernel K(τ)∝ τ xey, the corresponding
mean time delay T and order N are easily retrieved from the inverse relations

T=
x+ 1
y

, N= x+ 1 .

2.1. Equivalence to sets of ODEs

There are many representations of the Dirac δ-functions commonly used. What makes (3)
especially interesting is that the individual kernels can be evaluated by a simple additional
ordinary differential equation, which is the essence of the linear chain trick [12–14, 18]. For
this purpose auxiliary variables xm are introduced via

xm(t) =
ˆ ∞

0
x(t− τ)K(N,T)

m (τ)dτ, m= 1, . . . ,N . (6)

At face value, it may seem that one needs to store the full history of x(t) for the evaluation
of the convolutions defining the xm. This is however not the case. The reason is that the xm(t)
form a closed set of recursive differential equations [11, 14, 18],

ẋm(t) =
xm−1(t)− xm(t)

TN
, x0(t) = x(t), TN =

T
N
, (7)
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which holds for m= 1, . . . , N. For a derivation one uses

ẋm(t) =
ˆ ∞

0
K(N,T)
m (τ)

d
dt
x0(t− τ)dτ (8)

=−
ˆ ∞

0
K(N,T)
m (τ)

d
dτ
x0(t− τ)dτ

with an integration by parts of the last expression leading directly to (7) (see e.g. [14] for a
more rigorous proof). Including x0(t) = x(t), one has then a dynamical system defined byN+1
variables xm(t) (m= 0, . . . ,N).

2.2. Kernel series dynamics

The core object of interest is the (N+1)-dimensional dynamical system{
ẋ0(t) = F(t,x0(t),xN(t)) , x0(t) = x(t),

ẋm(t) =
xm−1(t)−xm(t)

TN
, m= 1, . . . ,N ,

(9)

where TN = T/N. It can be viewed from two distinct perspectives. First, that the set of N+1
equations defined by (9) constitutes an exact mapping of a DDEwith distributed time delays to
a set of ODEs. This mapping holds when the respective time delay kernel is given by a gamma
distribution with an integer exponent. We will show in section 4 that all delay distributions
can be mapped to sets of ODEs when the number of auxiliary variables is correspondingly
increased. For the most general case, a diverging number of memories xm(t) may however be
necessary. Secondly, one can interpret (9) as an approximation,

x(t−T)≈ xN(t) , (10)

to the delay system defined by (1) when h(t) = x(t−T). In this case the approximation
becomes exact in the limit N→∞, see (5). For numerical investigations, one can use (9) as a
proxy for the original DDE, with the advantage being that standard ODE solvers can be used.
In the following we examine in detail what happens when the width of delay distributions is
increased or decreased, with distributions of zero width corresponding to the case of a single
delay.

2.3. Generalized state history / phase space collapse

The trajectories of a delay system with a single delay T are defined in the space of the state
history [19],

X(t) = {x(t ′) | t ′ ∈ [t−T, t)} , (11)

which is formally infinite-dimensional. Consistently, an initial function ϕ : [−T,0)→ R is
needed for the dynamics defined by (1) when h(t) = x(t−T). Interestingly, one can regard
the set of dynamical variables xm(t) defining the kernel series framework, (9), as a general-
ized state history. The dynamical history is however not sampled at specific points in time, as
it would be the case for a discretized version of the standard state history. Instead, suitably
weighted superpositions of the past trajectory are taken.

The discretized version of the classical state history (11) can be used to formulate a basic
approximation to a DDE in terms of discretized Euler updatings [19]. In contrast to the ODE
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system (9), Euler updating schemes do however not incorporate a systematic relation to dis-
tributed delay times. The result, that the kernel series framework is an exact representation of
DDEs with gamma-distributed delay distributions with integer exponents, raises an interest-
ing question. In general, delay systems come with a formally infinite-dimensional state space,
which does however collapse, as a corollary of above observation, for specific delay distri-
butions. An interesting point regards the condition for this phase space collapse, namely if it
could occur also for other types of delay distributions. We leave these questions for further
investigations.

3. Results

We examined extensively the differences showing up between the kernel series framework and
the respective original delay equation. We find that lower-order bifurcation transitions agree
well already for modest N, which is however not the case for chaotic attractors. In particular,
we find that chaos tends to disappear when distributions of delays are considered, even when
the width of delays is comparatively small.

For the presentation of the results we distinguish between a local and a global regime,
noting that the stability of a fixpoint is determined by the local properties of the flow, with
the properties of chaotic attractors being determined by non-local, viz global properties of the
flow [20]. The same holds for period-doubling transitions.

3.1. Local regime: Hopf bifurcation

As a first example we study the generic delay system

ẋ(t) =−c− bx(t)− ax(t−T) , (12)

which emerges when expanding (1) with h(t) = x(t−T) around a given fixpoint. It is amenable
to an analytic solution [20]. To simplify discussions, we choose c= 0, whichmoves the fixpoint
of the system to x∗ = x(t) = x(t−T) = 0.

The fixpoint x∗ is stable for b, a> 0 when the time delay T is small. The ansatz x(t) =
Cexp(λt) leads to

0= λ+ b+ ae−λT . (13)

A Hopf bifurcation occurs at a critical time delay THopf when the real part of λ= p+ iq van-
ishes, viz when λ crosses the imaginary axis. One finds

b=−acos(qTHopf), q= asin(qTHopf), THopf =
arccos(−b/a)√

a2 − b2
. (14)

A numerical solution of (13) is presented in figure 2. We use a= 0.4 and b= 0.1, which is
consistent with the values of the linearized Mackey–Glass system, as discussed in section 3.2.
The Hopf bifurcation point is then THopf = 4.708.

6
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Figure 2. (a) As a function of the time delay T, the real and imaginary part of the numer-
ical solution of (13) for λ= p+ iq, where the parameters of the linear delay system (12)
are a= 0.4 and b= 0.1. AHopf bifurcation occurs at THopf when λ crosses the imaginary
axis, i.e. when Re(λ) = p= 0. (b) The exponent λ obtained from solving the analytic
expression (16) for the kernel series framework compared to the solution shown in (a)
obtained for the linear delay system (12) which is found in the kernel series framework
by taking the limit N→∞. Shown are results for N= 3, 10, 100.

The kernel series framework (9) for the linear delay system (12) leads to a linear system
of N+ 1 coupled ODEs. The fixpoint, which corresponds to xm = 0 for m= 0, . . . ,N, has the
Jacobian

J=
1
TN


−bTN −aTN
1 −1

. . .
. . .
1 −1

 , TN =
T
N
. (15)

The N+ 1 eigenvalues are retrieved from the roots of the characteristic polynomial PN(λ),
which can be extracted analytically,

PN(λ) = (b+λ)(1+TNλ)
N+ a . (16)

As expected, the expression (13) for a single time delay T is recovered in the limit N→∞
when using exp(x) = limk→∞(1+ x/k)k together with TN = T/N.

The dynamics of the system, and in particular its stability, is dictated by the maximal eigen-
value of the Jacobian λmax. In figure 2 we included results for λmax obtained by solving (16)
numerically for various orders N of the kernel series framework. The resulting maximal eigen-
values converge quickly towards the ones found for the original system as N increases, as
shown in figure 2.

To further quantify the differences between distributed and single time delays we evaluated
the relative deviation of the Nth order result for the Hopf bifurcation point, T(N)Hopf, from the
value found for a single time delay (14) using

µ(THopf) =

∣∣∣THopf −T(N)Hopf

∣∣∣
THopf

, THopf = lim
N→∞

T(N)Hopf. (17)
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Figure 3. Logarithmic representation of the relative differences between the Hopf
bifurcation point and the first and second period doubling bifurcation points obtained
within kernel series frameworks of order N, (9), and the value found by solving the
delay system obtained correspondingly in the limit N→∞. (a) For a= 0.4 and b= 0.1,
the relative deviation µ= µ(THopf) of the Hopf bifurcation point, as defined by (17).
One observes excellent agreement between a linear fit (red line) and the analytic 1/N
expansion (dashed magenta line), as given by (27), which we derive in the appendix.
(b) The relative deviation µ= µ(TPD) of the first (PD1, blue circles) and second (PD2,
green circles) period doubling transitions, together with linear fits (purple/red lines). For
a given order N, the relative deviation is generally lowest for the Hopf bifurcation, and
lower for the first period doubling than for the second.

The numerical results, as well as a power-law fit to the data, are shown in figure 3(a). We
further compare to the analytical prediction attained via perturbation theory, as presented in
the appendix. Asymptotically, the relative deviation µ(THopf) scales as 1/N, inversely with the
order of the kernel series. Quantitatively an agreement of 5% is achieved by N≈ 39, and 1%
for N≈ 225.

Herewe also treat the notable case of exponentially distributed delays that emerge forN= 1.
The corresponding characteristic polynomial only has solutions for negative real part of the
eigenvalue and thus no Hopf transition is observed. This implies that for all T the dynamics
are governed by the stable fixpoint.

3.2. Global regime

For the study of the influence of distributed time delays in the global regime, we consider a
prototypical time delay system with chaotic attractors, the Mackey–Glass system,

ẋ(t) =
αx(t−T)

1+(x(t−T))γ
−βx(t), α,β,γ,T> 0 , (18)

originally introduced to model the production of blood cells [21]. In the following, we set the
parameters to the standard values α= 0.2, β= 0.1, together with γ= 10 [1, 19]. This choice of
parameters ensures that the trivial fixpoint x∗1 = 0 is unstable for all time delays, while the fix-
point x∗2 = (α/β− 1)1/γ = 1 looses stability via a Hopf bifurcation when increasing the delay.
In the following we examine to which extent the sequence of bifurcations occurring in (18)

8
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changes when the relative width σ/µ= 1/
√
N, see (4), of the delay distribution becomes pos-

itive. For an overview of state-of-the-art studies of the Mackey–Glass see f.i. [1, 19].
For small time delays, the dynamics are governed by the stable fixpoint x∗2 . Linearizing (18)

around x∗2 and inserting an exponential ansatz yields (13) with b= 0.1 and a= 0.4, the para-
meter values used in section 3.1. A supercritical Hopf bifurcation, destabilizing the fixpoint
in favor of a stable limit cycle occurs at THopf ≈ 4.708, as determined by (14). When further
increasing the time delay, the system undergoes a series of period doubling bifurcations (the
first two at TPD,1 ≈ 13.39 and TPD,2 ≈ 15.95) and finally, for TChaos ≈ 16.5, a transition to a
chaotic regime. We further note that the Mackey–Glass system is strictly dissipative, in the
sense that the divergence of the flow is always negative. This holds also for the kernel series
framework, viz for distributed time delays, independently of the order N.

In figure 4 the stroboscopic projection, plotting xN(t)≈ x(t−T) as a function of x0(t) =
x(t), is used to illustrate the topology of the attractors found for three different values of the
average time delay, respectively for TPD,1 < T=14.0< TPD,2 and TPD,2 < T=16.3< TPD,3,
as well as for T = 17.5, which is a bit beyond the onset of chaos. Shown are the attractors
obtained by solving (18) directly, denoted as N→∞, together with the attractors obtained
from the corresponding kernel series framework (9), both for N= 300 and 500.1

It is clear from figure 4, that the topology of attractors may change once distributions of time
delays with positive coefficient of variation are allowed. For example, for T = 16.3, the result-
ing limit cycle is doubled only once for N= 300, but twice for N= 500 and above. Substantial
differences show up in addition for the chaotic attractors stabilizing for T = 17.5 when the
order N is changed. For N= 500, the stroboscopic projection of the chaotic attractor shown
figure 4, seems to be similar, on first sight, to the N→∞ limit. However, we did not attempt
to make a more precise comparison, f.i. in terms of the respective fractal dimensions, which
we leave for future studies.

In order to quantify the differences between the kernel series framework and the solution
of (18), we consider in figure 3(b) the locus of the bifurcation points of the first and second
period doubling, TPD. Shown are the relative differences µ, as defined by (17), between the
results obtained numerically for finite N and N→∞. One finds 1/N scaling, in analogy to the
behavior observed for the primary Hopf bifurcation, as presented in figure 3(a). Quantitatively,
µ= µ(TPD) drops below 5% for the first period doubling when N> 154, and below 1% for
N> 716 kernels. For larger time delays, larger number of kernels are required—for the second
period doubling transition, µ drops below 5% and 1% respectively for N> 212 and N> 1020.

Beyond a cascade of period doubling bifurcations, the Mackey–Glass system enters a
chaotic regime. The most common measure for deterministic chaos in dynamical systems
is the emergence of one or more positive Lyapunov exponents [20]. The dynamics is dom-
inated by the maximal Lyapunov exponent λmax, which quantifies the average spreading of
two initially close-by trajectories. Systems with more than one positive Lyapunov exponent
are usually called hyperchaotic [24]. In the Mackey–Glass system, we observe a transition
to chaos for time delays T> TChaos ≈ 16.5. At this point, the maximal Lyapunov exponent
becomes positive, as shown in figure 5(a). Further on, for T≳ 27, the Mackey–Glass system
shows hyperchaotic dynamics.

1 The Mackey–Glass system is solved numerically using a software package introduced in [22], which employs a
Runge–Kutta method, as described in [23]. The system of ordinary differential equation generated by the kernel
series framework is solved using a standard fourth-order Runge–Kutta method.
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Figure 4. The stroboscopic projection (x0(t),xN(t)) of attractors of the Mackey–Glass
system (18), where x0(t)→ x(t) and xN → x(t− T) for N→∞. Shown are numerical
solutions of the original delay differential equation (top row), and the respective Nth-
order kernel framework, namely forN= 500 andN= 300 (middle and bottom row). The
average time delay T is chosen such that the original system is beyond the first period
doubling (PD, left column), the second PD (middle column), or in the chaotic regime
(right column). Substantial differences can be seen between the system with a single
time delay (top row) and distributed delays when N is not overly large (bottom row).

In figure 5(a) the maximal Lyapunov exponent of the Mackey–Glass system is compared
to the maximal Lyapunov exponents of the corresponding kernel series frameworks. The point
where the transition to chaos occurs decreases in general with increasing N. For N= 500,
we find chaotic behavior for T≳ 16.8. In figure 5(b), the relative deviation of the maximal
Lyapunov exponent of the kernel series framework with respect to N→∞ is plotted over N.
Systems with N≲ 200 have not yet transitioned to the chaotic regime at T = 17.5, which is
associated with a kernel width of σ ≳ 1.3. Thus, we note that chaos may break down in the
kernel series framework if the kernel width exceeds a threshold value. In this sense, chaos is

10
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Figure 5. Themaximal Lyapunov exponent λmax of theMackey–Glass system, see (18).
(a) As a function of the average time delay T, the Lyapunov exponents obtained from
the kernel series framework (9) for different orders, N= 300 and N= 500, with N=∞
corresponding to the case of a single delay. (b) For T = 17.5, the relative deviation of the
maximal Lyapunov exponent, obtained respectively for the givenN and forN→∞. For
small N (blue shading) the system has not yet entered the chaotic regime (red shading).

not robust in the kernel series framework. The peak observed around N≈ 300 is caused by a
non-chaotic window within the chaotic regime.

3.3. Zero-one test for chaos

The evolution of the cross-correlation of two initially close-by trajectories can be used to clas-
sify the long-term dynamical behavior [25]. On defines with C12(t),

C12(t) =

〈
(x1(t)− x̄)(x2(t)− x̄)

〉
s2

≡ 1− D12(t)
2s2

, (19)

the cross-correlation of two trajectories x1(t) and x2(t), where x̄ is the center of gravity of the
attractor and s the standard deviation. An average ⟨·⟩ over initial positions x1(0) and x2(0) is
performed, such that the initial distance δ =∥x1(0)− x2(0)∥ is kept constant, with ∥·∥ denot-
ing the distance between the respective initial functions. The last term in (19) connects C12(t)
with the quadratic distance between the two trajectories, D12(t) = ⟨(x1(t)− x2(t))2⟩.

The long-term behavior of chaotic and non-chaotic dynamics differ qualitatively with
respect to C12 and D12, which can be used hence as a One-Zero test for chaos. For the four
basic types of attractors one has [25]:

• Fixpoint:A fixpoint attracting both trajectories leads toD12 → 0 independently of the initial
distance δ.

• Limit Cycle: On average, two trajectories ending up in the same limit cycle have a finite
distance that scales with the initial distance. For a limit cycle one has hence D12 ∝ δ.

• Chaotic Attractor: Independently of the initial distance, trajectories become fully decorrel-
ated on a chaotic attractor. This implies that D12 ∝ s2 for any δ > 0.

11
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Figure 6. As a function of time t, the cross-correlation C12(t) of two initially close-by
trajectories, as defined by (19). The plots are averages over 100 pairs of initial functions
with distances δ = 10−6. The average time delay is T = 17.5, for which the Mackey–
Glass system (18) shows normal turbulent chaos. Shown are the results of the ker-
nel series framework (9) for N= 300,500, together with the cross-correlation of the
Mackey–Glass system with a single time delay, denoted by N→∞.

• Partially Predictable Chaos: In this case the initial exponential divergence is limited by topo-
logical constraints, with the final chaotic state being reached only via a subsequent diffusive
process, which can be very slow. One has D12 < s2 for an extended period.

All four states are found in the Mackey–Glass system [19, 25]. In figure 6 the cross-correlation
is shown for an average delay T = 17.5. For large N, full decorrelation, viz a decrease of
the cross-correlation to essentially zero, occurs within the timescale of the initial exponen-
tial decorrelation, which is the hallmark of classical turbulent chaos. Decorrelation is a bit
slower for N= 300, which indicates that the kernel series framework is close to a partially
predictable chaotic state in this regime.

4. Generic delay distributions

So far we developed the theory for kernel series frameworks that are associated with a delay
system containing a single delay T. Here we generalized our framework to systems character-
ized from the start by a predetermined distribution of time delays.

As a first step we consider systems containing a finite number M of discrete time delays
Tj. Generically, distinct time delays could serve specific functional roles, like in a logistic
equation with mixed delays, ẋ(t) = x(t−T1)[1− x(t−T2)]. Alternatively, as considered here,
the history h(t) entering (1) is assumed to contain M terms with relative weights κj ⩾ 0,

h(t) =
∑
j

κjx(t−Tj),
∑
j

κj = 1 . (20)
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For every time delay Tj one constructs a kernel series of length Nj{
K(Nj,Tj)
i (t)

}
i=1,...,Nj

, j = 1, . . . ,M , (21)

as defined by (3). In addition, one introduces
∑

jNj corresponding auxiliary variables obeying
suitably generalized versions of (7).

For a general distribution of time delays, the history is given by

h(t) =
ˆ ∞

0
κ(τ)x(t− τ)dτ,

ˆ ∞

0
κ(τ)dτ = 1 , (22)

which generalizes (20). Next one uses the fact that exponential shapelets {ψi(t;β)}i∈N consti-
tute an orthogonal basis on the positive real axis [26]. The delay kernel can hence be expanded
in shapelets, as

κ(t) =
∑
i

ciψi(t;β), ci =
ˆ ∞

0
ψi(t;β)κ(t)dt , (23)

where the scale parameter β can be used for optimization purposes, e.g. to minimize the num-
ber of non-zero expansion coefficients cj. Given that exponential shapelets are superpositions
of the elementary kernels introduced in (3), one can convert (23) into a kernel series frame-
work, albeit at the cost of a possibly diverging number of auxiliary variables.

5. Chaotic diffusion

So far we investigated the Mackey–Glass system within the kernel series framework. Next we
turn towards a time-delayed system exhibiting chaotic diffusion. The flow,

ẋ(t) = sin(x(t−T)) , (24)

is given by a time-delayed sinusoidal function. Possible additional parameters, like an overall
prefactor, can be eliminated by rescaling x and t. The properties of (24) have been studied in
detail in [27]. The fixpoints x∗ = kπ, with k ∈ N, loose stability in a Hopf bifurcation which
gives rise to a stable limit cycle when increasing the time delay T. When further increasing the
time delay, the period of the limit cycle doubles, with the system transitioning afterwards to a
chaotic regime via an attractor-merging crisis. These features are reproduced when using the
kernel series framework, with the accuracy increasing as a function of N.

Linearizing (24) yields (12) with a= 1 and b= c= 0. Therefore, the discussion is qualit-
atively the same as for the Mackey–Glass system, as given in section 3.1. Again, the relative
differences between the loci of the bifurcation points in the time delayed system compared to
its representation in the kernel series framework scales as 1/N, as we did demonstrate previ-
ously for the Mackey–Glass system.

In [27] it is noted that (24) shows chaotic diffusion, which implies that the statistics of the
trajectory is given in the chaotic regime by 1DBrownian diffusion. This means that the position
x(tsample) is normal-distributed when evolving the system up to a sampling time tsample ≫ 1 for
a number of random initial conditions near the origin. One finds µ→ 0 for the mean [27].
Typical for diffusive behavior is a linearly increasing variance, σ2 ∼ tsample, a behavior that
is possible because the chaotic state of (24) forms a band of trajectories from the previously
disconnected chain of limit cycles obtained via 2π-shifts [27]. As an illustration, the chaotic
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Figure 7. In (a), for a time delay T = 20, the stroboscopic projection of the chaotic
attractor of (24). The inset shows how the trajectory moves along the band of previously
disconnected limit cycles. The trajectory spans the entire real axis,−∞< x(t)<∞. (b)
The probability density for the distance from the origin, also for T = 20, when sampling
at tsample = 4 · 103. The three data sets shown correspond to a direct integration of (24)
(blue curve) and to the behavior obtained when using the kernel series framework, with
orders N= 100,300 (green and red curve, respectively). A total of 104 initial condi-
tions close to the origin have been considered. The data is fitted to a GaussianN (µ,σ)
with mean µ and standard deviation σ, as given in the legend. Chaotic diffusion is more
prominent for smaller orders N.

attractor of (24) is presented in figure 7(a) for a time delay of T = 20. The trajectory spans the
entire real axis, −∞< x(t)<∞ [27].

In figure 7(b) we numerically evaluate the distribution of x(tsample) for different orders
N= 100,300 of the kernel series framework and compare to the case where (24) is integrated
directly (N→∞), using a sampling time of tsample = 4 · 103, 104 initial conditions and consid-
ering a time delay T = 20. We find that for different orders N the data is fitted accurately by a
Gaussian distribution. The mean remains close to zero for all cases considered. The standard
deviation, which is directly related to the diffusion constant, is however strongly dependent on
the order N, growing in size when lowering N. It would be interesting to investigate the scaling
of the standard deviation with 1/N, viz as a function of the variance of the distribution of time
delays, which is however computationally demanding. We leave this aspect for future work.
In any case our results show that chaotic diffusion is substantially more pronounced when the
distribution of time delays has a positive width.

6. Discussion

There are several reasons why distributed time delays are important: Firstly, on a fundamental
level, because memory formation takes time, as pointed out in the introduction. Secondly,
because natural processes, like the dynamics of blood cells described by the Mackey–Glass
system [21], are often intrinsically noisy. For memories of aggregate quantities, like the con-
centration of cells, biological variability translates into a corresponding distribution function.
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A similar argument can be made for socio-economic and climate models with delays [28, 29],
for which delayed feedback is transmitted in general via a cascade of intermediate processes.

Here we systematically investigated the effects broadened memory kernels have on the
dynamics of time delayed systems by replacing discrete delays with distributed delays. It is
known (e.g. [14, 18]) that a specific type of delay distributions, gamma distributions with
integer exponents, can be mapped exactly onto a set of N+ 1 ODEs. We here denoted this
procedure the ‘kernel series framework’. Gamma distributions take the form of broadened δ-
functions, as illustrated in figure 1, which allows to recover the case of a single time delay T as
the limiting case N→∞. The kernel series framework is hence well suited for the systematic
study of the influence of distributed time delays on the dynamical phase diagram. Alternatively
one may use the kernel series framework as an approximation to a given DDE. From a com-
putational point of view one has to weigh the perks of the kernel series framework against the
necessity to solve a much higher dimensional system of differential equations. The complexity
of differential equation integration usually scales linearly asO(n), where n denotes the size of
the system [22]. If the required order in the kernel series framework is high, integration may
be computationally demanding.

In this paper, we studied numerically the influence of time delay distributions for the
Mackey–Glass system as well as a simple time delayed system with sinusoidal nonlinearity.
Good agreement is observed in the local regime for the stability of fixed points, for which we
prove analytically that corrections scale as 1/N. We also find that higher-order phenomena,
such as period doubling transitions, the occurrence of chaotic dynamics and chaotic diffusion,
are substantially more sensitive to the introduction of distributed delays. It may hence be diffi-
cult to compare the predictions of dynamical systems with precisely defined time delays with
observations, in particular when distributed time delays play an important role in the respective
real-world applications.
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Appendix

Hopf bifurcation in perturbation theory

An analytical estimate the Hopf bifurcation point occurring within a kernel series framework
of order N, as defined by (9), may be attained through perturbation theory. In section 3.1 we
showed that the characteristic polynomial PN(λ) approaches (13) as (1+ x/k)k for k→∞.
The relation (

1+
x
k

)k
= ex

(
1− x2

2k

)
(25)
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holds in leading order 1/k, which is seen by taking the derivative of both sides and comparing
in leading order. Inserting (25) into the characteristic polynomial (16), we obtain

PN(λ) = λ+ b+ ae−λT− ε

[
(b+λ)

T2λ2

2

]
=: P∞(λ)+C(λ,ε) = 0 ,

where ε= 1/N and C(λ,ε) denotes a perturbation of (13), the characteristic equation P∞(λ)
of the system containing only a single delay. At the Hopf bifurcation point THopf, the real part
of λ vanishes. Thus, we make the following ansatz at the Hopf bifurcation point for q := Im(λ)
and THopf in terms of ε:

q=
∞∑
i=0

ci ε
i, THopf =

∞∑
i=0

ki ε
i. (26)

In zeroth order the solution (14) found for the DDE is reproduced. In first order we attain

k1 =
arccos2(−b/a)

(
b
√
a2 − b2 + a2 arccos(−b/a)

)
2(a2 − b2)3/2

.

For our usual values a= 0.4 and b= 0.1 we thus find in first order perturbation theory

THopf ≃ 4.708+ 9.458 · ε, ε=
1
N
. (27)
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