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Containment efficiency and control 
strategies for the corona pandemic 
costs
Claudius Gros1*, Roser Valenti1, Lukas Schneider1, Kilian Valenti2 & Daniel Gros3,4 

The rapid spread of the Coronavirus (COVID-19) confronts policy makers with the problem of 
measuring the effectiveness of containment strategies, balancing public health considerations with 
the economic costs of social distancing measures. We introduce a modified epidemic model that 
we name the controlled-SIR model, in which the disease reproduction rate evolves dynamically in 
response to political and societal reactions. An analytic solution is presented. The model reproduces 
official COVID-19 cases counts of a large number of regions and countries that surpassed the first 
peak of the outbreak. A single unbiased feedback parameter is extracted from field data and used to 
formulate an index that measures the efficiency of containment strategies (the CEI index). CEI values 
for a range of countries are given. For two variants of the controlled-SIR model, detailed estimates of 
the total medical and socio-economic costs are evaluated over the entire course of the epidemic. Costs 
comprise medical care cost, the economic cost of social distancing, as well as the economic value of 
lives saved. Under plausible parameters, strict measures fare better than a hands-off policy. Strategies 
based on current case numbers lead to substantially higher total costs than strategies based on the 
overall history of the epidemic.

In March 2020 the World Health Organization (WHO) declared the Coronavirus (COVID-19) outbreak a 
pandemic1. In response to the growth of infections and in particular to the exponential increase in deaths2, 
a large number of countries were put under lockdown, leading to an unprecedente recession3 which could 
potentially have longer term costs4. In this situation it is paramount to provide scientists, the general public and 
policy makers with reliable estimates of both the efficiency of containment measures (e.g. social distancing and 
non-pharmaceutical health interventions), and the overall costs resulting from alternative strategies.

The societal and political response to a major outbreak like COVID-19 is highly dynamic, changing often 
rapidly with increasing case numbers. We propose to model the feedback of spontaneous societal and political 
reactions by a standard epidemic model that is modified in one key point: the reproduction rate of the virus is 
not constant, but evolves over time alongside with the disease in a way that leads to a ‘flattening of the curve’5. 
The basis of our investigation is the SIR (Susceptible, Infected, Recovered) model, which describes the evolution 
of a contagious disease for which immunity is substantially longer than the time-scale of the outbreak6. A nega-
tive feedback-loop between the severity of the outbreak and the reproduction factor g is then introduced. As a 
function of the control strength αX , which unites the effect of individual, social and political reactions to disease 
spreading, the difference between an uncontrolled epidemic ( αX = 0 ) and a strongly contained outbreak (large 
αX ) is described, as illustrated in Fig. 1a. The model, which we name controlled-SIR model due to the presence 
of the control parameter αX , is validated using publicly available COVID-19 case counts from a large range of 
countries and regions. We provide evidence for data collapse when case counts of distinct outbreaks are rescaled 
with regard to their peak values. A comprehensive theoretical description based on an analytic solution of the 
controlled-SIR model is given. One finds substantial differences in the country-specific intrinsic reproduction 
factor and its doubling time. The controlled-SIR model allows in addition to formulate an unbiased benchmark 
for the effectiveness of containment measures, the containment efficiency index (CEI).

The controlled-SIR model is thoroughly embedded in epidemiology modeling. Early on, the study of the 
dynamics of measles epidemics7 has shown that human behavior needs to be taken into account8,9. In this regard, 
a range of extensions to the underlying SIR model have been proposed, such as including the effect of vaccina-
tion, contact-frequency reduction and quarantine10, human mobility11, self-isolation12, the effects of social and 
geographic networks13, the effects of awareness diffusion and epidemic propagation14,15, and the influence of 
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Figure 1.   XI representation of COVID-19 outbreaks. (a) Model illustration. The closed phase-space expression 
I = I(X) of actual infected cases I as a function of total infected cases X, as given by Eq. (3), is shown for two 
cases: αX = 0 (no control, red line) and αX = 10 (long-term control, blue line) for an intrinsic reproduction 
factor of g0 = 3 . The number of infections is maximal at Ipeak (open circle), after starting at X = I = 0 , with 
the epidemic ending when the number of actual cases drops again to zero. At this point the number of infected 
reaches Xtot . The peak Xpeak = 2/3 of the uncontrolled case, αX = 0 , is sometimes called the ‘herd immunity’ 
point. The final fraction of infected is Xtot = 0.94 . (b) Model validation for a choice of four countries/regions. 
The model (lines) fits the seven-day centered averages of COVID-19 case counts well. For South Korea data till 
March 10 (2020) has been used for the XI-fit, at which point a transition from overall control to the tracking of 
individuals is observable. (c) Data collapse for ten countries/regions. Rescaling with the peak values Xpeak and 
Ipeak , obtained from the XI fit, maps COVID-19 case counts approximately onto a universal inverted parabola. 
(d) Robustness test. The often strong daily fluctuations are smoothed by n-day centered averages. Shown 
are the Bergamo data (dots, n = 7 ) and XI-fits to n = 1 (no average), n = 5 and n = 7 . Convergence of the 
XI-representation is observed.
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explicit feedback loops16. For an in-depth description, epidemiology models need to cover a range of aspects17, 
as the distinction between symptomatic and asymptomatic cases18, which prevents in general the possibility of 
an explicit analytic handling. In the present work we pursue the alternative approach of retaining a minimal set 
of parameters, such that the resulting epidemiological model allows for an analytical description of the pandemic 
and its socio-economical aspects.

Political efforts to contain the pandemic, as social-distancing measures and non-pharmaceutical health inter-
ventions, are included in the controlled-SIR model as a dampening feedback mechanism. The controlled-SIR 
model is therefore suitable to estimate the overall economic and health-related costs associated with distinct 
containment strategies, in particular when accumulated over the entire course of an epidemic outbreak. This 
approach, which is followed here, extends classical studies of the economic aspects of controlling contagious 
diseases. A central question regards in this context the weighting of the economic costs of containment against 
the cost of treatment, and the loss of life19,20. For the value of life, statistical approaches attribute suitably estimated 
monetary values to an avoided premature death21–23. The resulting framework has been applied to the corona 
pandemic in several recent contributions in which the evolution of the epidemic has been taken in general as 
exogenous24, relying on estimates for the infection25 and case fatality rates26,27. Further studies have discussed the 
relative effectiveness of control measures25,28–31, and the possible future course of the disease32,33.

Results
Controlled‑SIR model.  In the following we introduce the model. At a given time t we denote with S = S(t) 
the fraction of susceptible (non-infected) individuals and I = I(t) the fraction of the population that is currently 
ill (active cases). Infected individuals can either recover or die as a consequence of the infection, here we sub-
sume both outcomes under R = R(t) , which denotes hence the fraction of recovered or deceased individuals. 
Normalization demands S + I + R = 1 at all times. The continuous-time SIR model34

describes an isolated epidemic outbreak characterized by a timescale τ and a dimensionless reproduction fac-
tor g. Social and political reactions reduce the reproduction factor below its intrinsic (medical disease-growth) 
value, g0 . We describe this functionality as

where we generalized standard epidemiological approaches to nonlinear incidence rates35,36. The reaction to 
the epidemic is taken to be triggered by the total fractional case count X (i.e. the sum of active, recovered and 
deceased cases), with αX encoding the reaction strength. In the Methods section we show how this functional-
ity is validated by COVID-19 data, see also Fig. 2. In this view αX sums up the effects of an extended number of 
social processes and political action taking. Further below we will examine in addition strategies for which the 
response is based on the fraction of actual active cases, I. We note that containment due to a reduction in the 
reservoir of susceptible S, is of minor importance, given that COVID-19 infection cases are generally small with 
respect to the overall population size.

The inverse functionality in Eq. (2) captures the law of diminishing returns, namely that it becomes progres-
sively harder to reduce g when increasing social distancing. In this view, small reductions of g are comparatively 
easy, however a suppression by several orders of magnitude requires a near to total lockdown. We denote Eq. (1) 
together with (2) the controlled-SIR model. Key to our investigation is the observation that one can integrate the 
controlled-SIR model analytically, as shown in the Methods section, to obtain the phase-space relation

This relation, which we denote the ‘XI representation’, is manifestly independent of the time scale τ.
The medical peak load Ipeak of actual infected cases is reached at a total fractional case count X = Xpeak , 

which is given by

For the case that αX = 0 (no control), Xpeak reduces to the well-known result Xpeak = (g0 − 1)/g0.
For finite αX , Ipeak is obtained from Eqs. (3) and (4),

For αX = 0 , Ipeak is sometimes called the ’herd immunity point’. The XI representation can be parameterized 
consequently either by g0 and αX , as in Eq. (3), or indirectly by Xpeak and Ipeak , which are measurable (modulo 
undercounting). In Fig. 1a an illustration of the XI-representation is given. For g0 = 3 and αX = 0 one has 
Xpeak = 2/3 and Ipeak ≈ 0.3 . The total fraction of infected Xtot is 94%, which implies that only about 6% of the 
population remains unaffected. Containment policies, αX > 0 , reduce these values. Fig. 1a and Eq. (5) illustrate 
a sometimes encountered misconception regarding the meaning of the herd immunity point, which we have 
labeled simply Ipeak . The epidemic doesn’t stop at Ipeak since infections continue beyond this point, albeit at a 
declining rate.

(1)τ Ṡ = −gSI , τ İ = (gS − 1)I , τ Ṙ = I

(2)g =
g0

1+ αXX
, X = 1− S ,

(3)I =
αX + g0

g0
X +

1+ αX

g0
log(1− X) .

(4)gS = 1, Xpeak =
g0 − 1

g0 + αX
,
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XI representation of COVID‑19 outbreaks.  In Fig. 1b,c we show for a representative choice of coun-
tries, regions and cities that COVID-19 outbreaks are described by the controlled-SIR model to an remarkable 
degree of accuracy. For the analysis presented in Fig. 1b,c we divided, as described in the Methods section, the 
official case counts by the nominal population size of the respective region or country. Seven-day centered aver-
ages are performed in addition. The country- and region-specific XI representations are then fitted by Eq. (3). 
The fact that the outbreaks are well described by the model, independently of the size of the country, region or 
city, evidences the applicability of the controlled-SIR model.

It has been widely discussed that official case counts are affected by a range of factors, which include the 
availability of testing facilities and the difficulty to estimate the relative fraction of unreported cases38,39. For 
example, as of mid-March 2020, the degree of testing for COVID-19, as measured by the proportion of the entire 
population, varied by a factor of 20 between the United States (340 tests per million) and South Korea (6100 tests 
per million)40. The true incidence might be, according to some estimates41 higher by up-to a factor of ten than 
the numbers reported in the official statistics as positive.

Case counts enter the XI representation in both the x− and y− axis. Scaling both I and X with a constant 
factor allows therefore to compensate for the undercounting problem. At the same time the control strength αX 
needs to be rescaled, a procedure implicitly implemented for the fits shown in Fig. 1b,c. The XI framework is 
in this sense robust. Renormalization becomes however invalid if the undercounting of infection cases changes 
abruptly at a certain point during the epidemics, f.i. as a result of substantially increased testing. We will come 
back to this point further below. A fundamental change in the strategy followed by the government, e.g. from 
laissez faire to restrictive, would lead likewise to a change in αX , which is not captured in the current framework.

In the analysis presented in Fig. 1 daily case counts were taken as proxies for the number (relative fraction), 
of infected individuals I = I(t) . This assumption holds only up to a rescaling factor, which implies that the g0 
extracted for a given country or region is not the native, but an effective reproduction factor. To see this con-
sider, e.g., the initial slope, I ∼ X(g0 − 1)/g0 , as given by Eq. (15). Rescaling daily case counts in order to obtain 
estimates for the number of infected individuals changes the slope and hence g0 . Given that the appropriate 
rescaling of daily case counts can only be estimated, and that we are interested here in a simple but accurate 
effective modeling of COVID-19 outbreaks, and not in the extraction of the native reproduction factor, we did 
not pursue this route.

In Table 1 we present for a number of countries and regions the obtained effective growth factors g0 and the 
corresponding doubling times τ2 , where τ2 = log(2)/ log(g0) defines the number of time units τ needed to double 
case numbers. As expected, according to the description above, one finds that the values of g0 are substantially 

Figure 2.   Validation of controlling feedback loop. The fraction of newly infected at time t and at t − 4 is used 
to estimate the time dependent reproduction factor Rt = It/It−4 , when assuming a serial interval of four days 
(compare37). Note that a seven-day centred moving average It =

∑t+3
s=t−3 Is is utilised. (a) Rt as a function of 

the relative cumulative number X/Xpeak of cases. A fit to the same functional form as in Eq. (2) is given (grey 
line). (b) correlation of Rt and gt . The estimated reproduction factor Rt is compared to the effective reproduction 
factor gt as defined in Eq. (2). In (a) and (b) only data between 0.1 ≤ X/Xpeak ≤ 2 is shown, with the lower 
bound discarding the strong fluctuations in the early stages of the pandemic. The upper bound is used to define 
the termination of the first wave.
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lower than the consensus estimates 2-3 for the native reproduction number42–46. The observed doubling times 
τ2 are however retained when adapting the effective time scale τ accordingly.

For a robustness check we evaluated the parameters of the controlled-SIR model assuming that only a fraction 
f of the nominal population of the country or region in question could be potentially infected, possibly due to 
the presence of social or geographical barriers to the disease spreading. Only marginal differences were found 
for f = 1/3 . The data presented in Table 1 suggest most countries followed in the first wave of the COVID-19 
pandemic strict containment policies, as measured in terms of the CEI index. This insight is of particular rel-
evance for the discussion of the costs incurring for the various containment strategies presented further below.

Data collapse for COVID‑19.  Given that the XI representation is determined solely by two quantities, 
Xpeak and Ipeak , universal data collapse can be attained by plotting field data normalized with regard to the 
respective peak values, viz by plotting I/Ipeak as a function of X/Xpeak . It is remarkable, to which degree the 
country- and region specific official case counts coincide in relative units, see Fig. 1c. It implies that the con-
trolled-SIR model constitutes a faithful phase-space representation of epidemic spreading subject to socio-polit-
ical containment efforts.

Asymmetry of up/down time scales.  For the controlled SIR model an explicit analytic expression for 
the X − I phase space representation can be derived, as given by Eq. (3), but not for the complete timeline X(t) 
and I(t). Exploiting the fact that case counts are generally small with respect to the population for real-world 
epidemic outbreaks, the universal relation

between the time the outbreak needs to retreat from the peak, and to reach it in first place, can however be found, 
as shown in the Methods section. Interestingly, the ratio of down-/ and up-times is independent of the control 
strength αX (if and only if X ≪ 1 ), which suggests that Eq. (6) is valid for epidemic outbreaks in general. For 
COVID-19, typical values of the effective g0 are of the order of 1.2-1.3, as listed in Table 1, which implies that 
outbreaks take of the order of 40-60% longer to retreat than to ramp up.

Containment efficiency index.  The control strength αX enters the reproduction factor as αXX , see 
Eq.  (2). Data collapse suggest that regional and country-wise data is comparable on a relative basis. From 
αXX = (αXXpeak)(X/Xpeak) it follows that αXXpeak = αX(g0 − 1)/(g0 + αX) is a quantity that measures the 
combined efficiency of socio-political efforts to contain an outbreak. Dividing by g0 − 1 results in a normalized 
index, the ‘Containment Efficiency Index’ (CEI):

with CEI ∈ [0, 1] . The index is unbiased, being based solely on case count statistics, and not on additional socio-
political quantifiers. Our estimates are given in Table 1. The values for the evaluated regions/ countries are con-
sistently high, close to unity, the upper bound, indicating that the near-to-total lockdown policies implemented 
by most countries have been effective in containing the spread of COVID-19. A somewhat reduced CEI value 
is found for the particularly strongly affected Italian region of Bergamo. For South Korea the CEI is so high that 
its deviation from unity cannot be measured with confidence.

(6)
time down from the peak

time up to the peak
= 2g0 − 1

(7)CEI =
αXXpeak

g0 − 1
=

αX

g0 + αX
,

Table 1.   COVID-19 containment efficiency index. For selected countries/ regions, key COVID-19 parameters, 
as extracted from the respective official case counts. Given is the dimensionless reproduction factor g0 , the 
doubling time τ2 = log(2)/ log(g0) , in units of τ , and the containment efficiency index CEI = αX/(g0 + αX) . 
Note that g0 is not the native, but an effective reproduction factor.

Location g0 τ2 CEI

Italy ITA 1.17 4.4 0.991

Iceland ISL 1.19 4.0 0.983

Bergamo ITA 1.20 3.8 0.972

Roma ITA 1.20 3.8 0.998

Germany DEU 1.21 3.6 0.995

United States USA 1.22 3.5 0.994

Spain ESP 1.23 3.3 0.990

Luxembourg LUX 1.28 2.8 0.988

Austria AUT​ 1.30 2.6 0.997

Israel ISR 1.30 2.6 0.997

Australia AUS 1.32 2.5 0.999

South Korea KOR 1.46 1.8 1.000
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Long‑term versus short‑term control.  So far, in Eq. (2) it was assumed that society and policy makers 
react to the total case count of infected X. This reaction pattern, which one may denote as ‘long-term control’, 
describes field data well. It is nevertheless of interest to examine an alternative, short-term control:

For short-term control the relevant yardstick is given by the actual case number of infected I. In reality, people 
will react to officially reported case counts, which are affected by the undercounting problem. For the terms αI I 
and αXX in Eq. (8) this corresponds to a renormalization of reaction parameters αI and αX.

Both control types, short- and long-term, can be employed either for the continuous-time SIR model, Eq. 
(1), or for the discrete-time variant,

The time-dependent reproduction factor has been denoted here as ρt , in order to make clear that discrete times 
are used. Short- and long-term control is then equivalent to ρt = ρ0/(1+ αI I) and ρt = ρ0/(1+ αXX) . One 
time step corresponds for the discrete-time SIR model to the mean infectious period.

The simulations of Eq. (9) presented in Fig. 3 illustrate the capability of short-term and long-term reaction 
policies to contain an epidemic. While both strategies are able to lower the peak of the outbreak with respect to 
the uncontrolled ( αX = αI = 0 ) case, the disease will become close to endemic when the reaction is based on 
the actual number of cases, It , and not on the overall history of the outbreak.

Also included in the lower panel of Fig. 3 is a protocol simulating an increase of testing by a factor of two. 
Here (αX ,αI ) = (400, 0) and (αX ,αI ) = (0, 400) have been used as the starting reaction strengths, respectively 
for long- and short-term control, which are increased by a factor of two when testing reduces the undercounting 
ratio by one half. One observes that long-term control is robust, in the sense that increased testing contributes 
proportionally to the containment of the outbreak. Strategies reacting to daily case number are in contrast likely 
to produce an endemic state.

The framework developed here, Eqs. (1) and (2), describes mass control strategies, which are necessary when 
overly large case numbers do not allow to track individual infections. The framework is not applicable once 

(8)g =

{

g0/(1+ αI I) (short-term)
g0/(1+ αXX) (long-term)
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Figure 3.   Control of epidemic peak. (a) Shown is the timeline of actual infected cases during an epidemic 
outbreak with an intrinsic reproduction factor of ρ0 = 3.0 defined in the discrete model, which is close to 
COVID-19 estimates47. The simulation is obtained by iterating Eq. (9), with one iteration corresponding to two 
weeks, taken as the average duration of the illness. Short-term control, when responding to the actual number 
of cases, see Eq. (8), is able to reduce the peak strain on the hospital system, but only by prolonging substantially 
the overall duration. Long-term control, which takes the entire history of the outbreak into account, is able to 
reduce both the peak and the duration of the epidemic. (b) Increasing testing by a factor two (arrow), reduces 
the undercounting factor which increases, in turn, the effective response strength for both, the peak number of 
actual cases and the duration of the outbreak. Here (αX ,αI ) = (400, 0) / (0, 400) has been used respectively for 
long- / short-term control.
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infection rates are reduced to controllable levels by social distancing measures. The horizontal ’tail’ evident in 
the data from South Korea in Fig. 1b can be taken as evidence of such a shift from long-term mass control to 
the tracking of individual cases.

Costs of controlling the COVID‑19 pandemic.  As shown above, the controlled-SIR model allows for a 
faithful modeling of the entire course of an isolated outbreak. We apply it now to investigate how distinct policies 
and societal reaction patterns, as embedded in the parameter αX , influence the overall costs of the epidemic. This 
is an inter-temporal approach since the cost of restrictions today to public life (lockdowns, closure of schools, 
etc.) must be set against future gains in terms of lower infections (less intensive hospital care, fewer deaths). Four 
elements dominate the cost structure: (i) The working time lost due to an infection, (ii) the direct medical costs 
of infections, (iii) the value of life costs, and (iv) the cost related to ‘social distancing’. The first three are medical 
or health-related. All costs can be scaled in terms of GDP per capita (GDPp.c. ). This makes our analysis applicable 
not only to the US, but to most countries with similar GDPp.c. , e.g. most OECD countries.

Overall cost estimates.  The cost estimates, which are given in detail in the Supplementary Information, 
can be performed disregarding discounting. With market interest rates close to zero and the comparatively short 
time period over which the epidemic plays out, a social discount rate between 3% and 5% would make little dif-
ference over the course of one year48.

Total health costs Cmedical incurring over the duration of the epidemic are proportional to the overall frac-
tion Xtot = Xt→∞ of infected, with a factor of proportionality k. We hence have Cmedical = kXtot . We estimate 
k ≈ 0.305 in terms of GDPp.c. when all three contributions (working-time lost, direct medical cost, value of life) 
are taken into account, and k ≈ 0.14 when value of life costs are omitted.

The economic costs induced by social-distancing measures, Csocial , depend in a non-linear way on the evolu-
tion of new cases (short-term control) or the percentage of the population infected (long-term control). To be 
specific, we posit that the reduction of economic activity is percentage-wise directly proportional to the relative 
reduction in the reproduction factor49, viz to (ρ0 − ρt)/ρ0:

where 2/52 is the per year fraction of 2-week quarantine period. The epidemic is considered to be under control 
when the fraction of new infections It falls below a minimal value Imin . As detailed out in the Supplementary 
Information, a comprehensive analysis yields m ≈ 0.25 in terms of GDPp.c. . Note that the ansatz Eq. (10) holds 
only when mass control is operative, viz when large case numbers do not allow the tracking of individual 
infections.

Once k and m are known, one can compare the total costs incurring as the result of distinct policies by com-
puting the sum of future costs for different values for αX in Eq. (2). This is illustrated in Fig. 4 with the value of 
life costs included ( k = 0.305 ), and in Fig. 5, without value of life costs ( k = 0.14 ). Given are the total cumulative 
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Figure 4.   Cost of epidemic control strategies including value of life. Shown are the costs in terms of GDPp.c. , 
for long-term and short-term control, as defined by Eq. (8), both as a function of αX and the CEI values (7), as 
indicated by the additional axis at the bottom. Given are the costs incurring from social distancing, Eq. (10) with 
m = 0.25 (lower panel), the pure medical costs with value of life costs (middle panel), and the sum of social and 
medical costs (upper panel). It is assumed that the containment policy switches from mass control to individual 
tracking when the fraction of actual cases It drops below a threshold of Imin = 10−5 . The starting I0 = 2 · 10−5.
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costs for the two strategies considered, long-term and short-term control, both as a function of the respective 
implementation strength, as expressed by the value of αX and αI.

The middle panel of Fig. 4 shows that a society focused on short-term successes will incur substantially 
higher medical costs, because restrictions are relaxed soon after the peak. By contrast, if policy (and individual 
behavior) is influenced by the total number of all cases experienced so far, restrictions will not be relaxed pre-
maturely and the medical costs will be lower for all values of αX . The bottom panel shows the social distancing 
costs as a fraction of GDPp.c. , which represent a more complicated trade-off between the severity of the restric-
tions and the time they need to be maintained. If neither policy, nor individuals react to the spread of the disease 
( αX = 0 ) the epidemic will take its course and costs are solely medical. This changes as soon as society reacts, 
i.e. as αX increases. Social distancing costs increase initially (i.e. for small values of αX ), somewhat stronger for 
the long-term than for the short-term reaction framework. The situation reverses for higher values of αX and αI 
with αX ,αI ≈ 30 being the turning point. From there on, the distancing cost from a long-term based reaction 
falls below that of the short-term strategy. The sum of the two costs is shown in the uppermost panel. For large 
values of αX , αI short-term policies result in systematically higher costs.

Supplementary Figure 1 of the Supplementary Information shows that short-term control cannot explain 
observed COVID-19 outbreaks per se. Our estimates for the incurring costs suggest that economic cost consid-
erations may have caused countries to follow predominantly long-term control strategies during the first wave 
of the COVID-19 outbreak.

Discussion
The total costs of competing containment strategies can be estimated if the feedback of socio-political meas-
ures can be modeled. For this one needs two ingredients: (i) a validated epidemiological model and (ii) a link 
between the impact of containment efforts, in terms of model parameters, to their economic costs. Regarding 
the first aspect, we studied the controlled-SIR model and showed that COVID-19 outbreaks follow in many 
cases the phase-space trajectory, the XI representation, predicted by the analytic solution. The same holds for the 
2015 MERS outbreak in South Korea, as shown in Fig. 6b. We extracted for a number of countries and regions 
estimates for the intrinsic doubling times and found that they are not correlated to the severity of the outbreak. 
Regarding the second aspect, we proposed that the economic costs of social distancing are proportional to the 
achieved reduction in the infection rate49. Equation (10) establishes the required link between epidemiology, 
political actions and economic consequences. Health-related costs, which are related to official case counts, are 
in contrast comparatively easier to estimate. We have not considered formally the optimal control problem, 
which would consist of minimizing the sum of total costs if the control strength could be chosen freely for every 
period. Instead, we have been interested here in comparing distinct containment strategies under which society 
and governments react in a predictable pattern to the spread of the disease.

A non-trivial outcome of our study is that strong suppression strategies lead to lower total costs than taking 
no action, when containment efforts are not relaxed with falling infection rates. A short-term control approach 
of softening containment with falling numbers of new cases is likely to lead to a prolonged endemic period. With 
regard to the ‘exit strategy’ discussion, these findings imply that social distancing provisions need to be replaced 
by measures with comparative containment power. A prime candidate is in this regard to ramp up testing capa-
bilities to historically unprecedented levels, several orders of magnitude above pre-Corona levels. The epidemic 
can be contained when most new cases are tracked, as implicitly expressed by the factor αX . This strategy can 
be implemented once infection rates are reduced to controllable levels by social distancing measures. Contain-
ment would benefit if the social or physical separation of the ‘endangered’ part of the population from the ‘not 
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endangered’ would be organized in addition on a country-wide level, as suggested by community-epidemiology. 
With this set of actions the vaccine-free period can be bridged.

As a last note, there is a sometimes voiced misconception regarding the meaning of the herd immunity point, 
which occurs for an infection factor of three when 66% of the population is infected. Beyond the herd immunity 
point, the infected-case counts remain elevated for a considerable time. The outbreak stops completely only once 
94% of the population has been infected, as illustrated in Fig. 1a.

Methods
Validation of the model from COVID‑19 data.  In Fig. 2 we show how the model given in Eq.  (2) is val-
idated by COVID-19 data. Fig. 2a displays the collected data of infected population during the first wave of the 
COVID-19 pandemic in a range of representative countries and regions. Plotted is the time-dependent repro-
duction factor R t  as a function of the relative cumulative case count X/Xpeak . We followed standard procedures37 
and defined Rt as the fraction of newly infected individuals at time t with respect to the infected individuals at 
time t − 4 days, Rt = It/It−4 , where seven-day centered moving averages It =

∑t+3
s=t−3 Is are considered. Also 

shown is a fit to the data using the functional form predicted by our model, Eq. (2). The quantitative comparison 
between field data and modeling validates the controlled-SIR model. For a set of representative countries and 
regions it is shown in Fig. 2b that there is a direct correlation between the measured reproduction factor Rt and 
the effective reproduction factor gt , as defined by Eq. (2).

Data collection and handling.  Data has been accessed as of May 18 (2020) via the public COVID-19 
Github repository of the Johns Hopkins Center of Systems Science and Engineering50. Preprocessing was kept 
minimal, comprising only a basic smoothing with sliding averages. If not stated otherwise, a seven day centered 
average (three days before/after, plus current day) has been used. Robustness checks with one, three and five day 
sliding averages were performed, as shown in Fig. 1d. Fractional case counts are obtained by dividing the raw 
number by the respective population size. For the case of South Korea, the XI-analysis was performed using the 
initial outbreak, up to March 10 (2020). China has been ommitted in view of the change in case count method-
olgy mid February 2020.

The variable I represents in the SIR model the fraction of the population that is infectious, which for this 
model coincides with the infected population. For the COVID-19 data, we used instead an XI-representation 
for which the number of new daily cases is plotted against the total case count. This procedure is admissible as 
long as the relative duration of the infectious period does not change.

Fitting procedure.  We compared the theoretical result for the controlled SIR model, I(X) ≡ I(theory)(X) , 
see Eq. (3), to the reported data I(data)t  , where t runs over all days. The field data X(data)

t  for the total case number 

Figure 6.   Case count modelling. (a), Modeling case counts as uncontrolled outbreaks. Case counts, here for 
Germany (seven-day centered averages, dots), can be modeled using either the full XI representation (full line), 
as given by Eq. (3), or with the standard uncontrolled SIR model ( αX = 0 , dashed lines). Using the nominal 
population size for Germany, 83 Million, leads to an utterly unrealistic αX = 0 curve (dashed, grey). The 
best αX = 0 fit is obtained when a fictitious population size of 478 Thousand is assumed (dashed, black). An 
epidemic abates on its own only when the population size is of the order of the total case count divided by Xtot . 
(b) XI representation of the 2015 MERS outbreak in South Korea, covering a total of 186 cases. A n = 7 centered 
average has been used, in view of the small case numbers.
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is crowded at low levels of X and I in the XI representation. A fitting procedure that takes the range X ∈ [0,Xtot] 
uniformly into account is attained when minimizing the weighted loss function

For the weight we used ut = X
(data)
t − X

(data)
t−1 = I

(data)
t  , which satisfies the sum-rule 

∑

t ut = Xtot , where Xtot is 
the total (maximal) case count. With Eq. (11) it becomes irrelevant where the timeline of field data is truncated, 
both at the start or at the end. Adding a large number of null measurements after the epidemic stopped would 
not alter the result. Numerically the minimum of U as a function of g0 and αX is evaluated.

Modeling field data as uncontrolled outbreaks.  It is of interest to examine to which degree official 
case statistics could be modeled using an uncontrolled model, αX = 0 . For this purpose it is necessary to assume 
that the epidemics stops on its own, which implies that one needs to normalize the official case counts not with 
respect to the actual population, but with respect to a fictitious population size N. In this view the outbreak 
starts and ends in a socially or geographically restricted community. The results obtained when optimizing N are 
included in Fig. 6a. At first sight, the αX = 0 curve tracks the field data. Note however the very small effective 
population sizes, which are found to be 478000 for the case of Germany. Alternatively one may adjust g0 by hand 
during the course of an epidemic, as it is often done when modeling field data.

Analytic solution of the controlled‑SIR model.  Starting with the expression for the long-term control, 
Eq.   (2), one can integrate the controlled-SIR model Eq. (1) to obtain a functional relation between S and I. 
Integrating İ/Ṡ , viz

yields

where the integration constant c is given by the condition I(S=1) = 0 . Substituting S = 1− X one obtains con-
sequently the XI-representation Eq. (3). The analogous result for αX = 0 has been derived earlier51. The number 
of actual cases, I, vanishes both when X = 0 , the starting point of the outbreak, and when the epidemic stops. 
The overall number of cases, Xtot , is obtained consequently by the non-trivial root Xtot of Eq. (3), as illustrated 
in Fig. 1a. As a side remark, we mention that the XI representation allows us to reduce Eq. (1) to

which is one dimensional. Integrating Eq. (13) with g = g(S) yields S = S(t) , from which I(t) follows via 
τ İ =

(

gS − 1
)

I and R(t) from the normalization condition S + I + R = 1.

Large control limit of the XI representation.  Expanding Eq. (3) in X, which becomes small when 
αX ≫ 1 , one obtains

which makes clear that the phase-space trajectory becomes an inverted parabola when infection fractions are 
small. As a consequence one finds

which shows that the slope dI/dX = (g0 − 1)/g0 at X → 0 is independent of αX and of the normalization proce-
dure used for I and X. The first result was to be expected, as αX incorporates the reaction to the outbreak, which 
implies that αX contributes only to higher order. The dimensionless natural growth factor g0 is hence uniquely 
determined, modulo the noise inherent in field data, by measuring the slope of the daily case numbers with 
respect to the cumulative case count.

From Eq. (14) one obtains

for the total number of infected Xtot in the large-control limit. In analogy one finds

(11)U =
∑

t

ut

(

I
(data)
t − I(theory)(X

(data)
t )

)2
.

dI = −dS +
1

g(S)S
dS = −dS +

1

g0

1+ αX(1− S)

S
dS ,

(12)I = −

(

αX

g0
+ 1

)

S +
1+ αX

g0
log(S)+ c ,

(13)τ Ṡ = −
gS

g0

[

(αX + g0)(1− S)+ (1+ αX) log(S)
]

,

(14)I =
1+ αX

2g0
X

[

2
g0 − 1

1+ αX
− X

]

+ O(X3) ,

(15)I ≈
g0 − 1

g0
X + O(X2) ,

(16)Xtot

∣

∣

αX≫1
≈ 2

g0 − 1

αX

(17)Ipeak
∣

∣

αX≫1
≈

(g0 − 1)2

g0αX
, Xtot ≈

2g0

g0 − 1
Ipeak
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from Eq. (3), and in comparison with Eq. (16).

Time scale asymmetry.  From the one-dimensional representation (13) of the controlled SIR model one 
can estimates two characteristic time scales. For this purpose one considers an initial relative infection status 
fXXtot , with fX > 0 and fX ≪ 1.

•	 Run-up Tup , defined as the time needed to reach the peak when starting from Xstart = fXXtot.
•	 Run-down Tdown , defined as the time needed to reach Xend = (1− fX)Xtot , down from the peak.

In general one needs to integrate Eq. (13) numerically. Given that real-world fractional case counts X are small, 
X < Xtot ≪ 1 , one can simplify (13), as for (14), obtaining

It follows directly that Tdown/Tup = 2g0 − 1 , as stated in Eq. (6). For a pathogen to spread its dimensional 
growth factor g0 needs to be larger than unity, compare Table 1. Going down takes hence substantially longer 
than ramping up.

Data availability
The COVID-19 data examined is publicly accessible via the COVID-19 Github repository of the Johns Hopkins 
Center of Systems Science and Engineering https://​github.​com/​CSSEG​ISand​Data/​COVID-​19. Data for the 2015 
MERS outbreak in South Korea is publicly available from the archive of the World Health organization (WHO), 
https://​www.​who.​int/​csr/​disea​se/​coron​avirus_​infec​tions/​archi​ve-​cases/​en/.
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