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Abstract

The assessment of the health impacts of the COVID-19 pandemic requires the consideration of mobility
networks. To this aim, we propose to augment spatio-temporal point process models with mobility network
covariates. We show how the resulting model can be employed to predict contagion patterns and to help in
important decisions such as the distribution of vaccines. The application of the proposed methodology to
27 European countries shows that human mobility, along with vaccine doses and government policies, are
significant predictors of the number of new COVID-19 reported infections and are therefore key variables
for decision-making.
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1 Introduction

Interconnectedness is an increasingly relevant concept in many research and practical domains. It
features prominently in key issues, such as disease transmission in contact networks, investigation
of human behaviour, migration phenomena, and many others. Many types of interconnectedness
have been widely studied by means of statistical networks: see, e.g., Khanin and Wit (2006),
Tucker et al. (2005), Abegaz and Wit (2013), Wang et al. (2009), Vinciotti et al. (2016), and
Giudici and Spelta (2016); along with their implications on society, see, e.g., Ghani and
Garnett (1998), Di Zio et al. (2004), Rocha et al. (2017), Barbillon et al. (2017), and Wright
et al. (2021). However, there is still a strong need for network models that can leverage intercon-
nectedness for predictive purposes.
The recent coronavirus disease outbreak has ignited further discussions, as humanmobility net-

works play a key role in its diffusion. Differently from the previous acute respiratory syndrome
(SARS), which gradually emerged in 2003, the novel coronavirus (SARS-CoV-2) did register a dra-
matic rate of growth in positive individuals, and early evidence of a high transmission rate (Guan
et al., 2020; Wang et al., 2020). This pushed governments worldwide to adopt a wide set of policy
measures, such as lockdowns and mobility restrictions, to limit the spread of contagion. Such in-
terventions have been found in many cases to significantly reduce contagion (Hsiang et al., 2020;
Xiong et al., 2020), at the expense of strong consequences on mobility patterns (Schlosser et al.,
2020; Zhang et al., 2020).
A recent stream of literature exploits mobility networks to examine, monitor, and characterize

the diffusion of COVID-19 (Aleta et al., 2020; Chinazzi et al., 2020; Davies et al., 2020; Della
Rossa et al., 2020; Flaxman et al., 2020; Kraemer et al., 2020; Maier & Brockmann, 2020;
Scala et al., 2020).Within this stream, some studies have employedmobility networks to quantify,
by means of a combination of epidemiological and economic models, the economic effects of the
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pandemic (Spelta et al., 2020; Spelta& Pagnottoni, 2021). In these works, the COVID-19 epidem-
ic is viewed through the lens of complex systems, with the aim of understanding the impact of lock-
down measures on the virus transmission.
We follow the latter developments, andwe leveragemobility networks to understand the impact

of policy restrictions on the COVID-19 counts. In particular, we employ self-exciting point proc-
esses, a class of birth processes which have been used tomodel the spread and diffusion of phenom-
ena of various nature: from earthquakes, to email networks and crime forecasting.
Self-exciting point processes have been also designed to model the diffusion of epidemics of

different types: Becker (1977) used self-exciting point processes to model the dynamics of the
Brazilian smallpox disease; Farrington et al. (2003) employed the methodology to study the ef-
fect of vaccinations on the spread of measles in the United States; in Balderama et al. (2012) the
authors proposed an extension of theHawkes process to characterize the diffusion of red banana
trees invasive species in a Costa Rican rainforest; Meyer et al. (2012) implemented a Hawkes
process to estimate spread rates and describe properties of the human incidence of invasive men-
ingococcal disease. More recently, some studies have dealt with modelling the COVID-19 epi-
demic with the same methodology, see Zhu et al. (2020), Rambhatla et al. (2020), and
Chiang et al. (2020). Alternative time-series approaches to model the COVID-19 epidemic
spread can be found, for instance, in Harvey and Kattuman (2020), Giudici et al. (2023) and
Celani and Giudici (2022).
Inmore detail, Chiang et al. (2020) developedmodels of COVID-19 transmission usingHawkes

processes with spatio-temporal covariates at the United States county level, through a regression
on Google mobility indices and demographic covariates. They showed how Hawkes process-
based models outperform several competing alternative models currently used to monitor the con-
tagion diffusion, such as an ensemble approach and the susceptible-infected-recovered model.
Rambhatla et al. (2020) worked on the development of spatio-temporal risk scores to indicate
the risk propensity of the disease in different places. They relied on aHawkes process-basedmodel
to assign relatively fine-grain spatial and temporal risk scores bymeans of high-resolutionmobility
data based on cell-phone location signals across the United States. Their results showed that
spatio-temporal risk scores based on high-resolution mobility data can provide useful insights
and ease safe re-openings. Similarly, Zhu et al. (2020) presented a spatio-temporal model with
mobility and social demographic covariates to estimate COVID-19 confirmed cases and deaths
one-week ahead, at the county level, in the United States. Their retrospective out-of-sample
county-level predictions were able to forecast the subsequently observed COVID-19 activity
accurately, with a clear identification and quantification of the most important factors which
determine the COVID-19 spread.
Against this background, we propose a spatio-temporal network model which takes root from

self-exciting point processes and enhances them with spatio-temporal, mobility, and socio-
demographic covariates, whose parameters are estimated via maximum likelihood through an
expectation maximization (EM) algorithm. The model relies on a large set of relevant predictors,
pre-processed through dimensionality reduction techniques such as non-negative matrix factor-
ization (NNMF) and principal component analysis (PCA). We apply our methodology to perform
the prediction of the number of newCOVID-19 reported infections of 27 European countries over
the period ranging from 1 September 2020 to 30 May 2021. After evaluating the model perform-
ance, we conduct a policy scenario analysis under the hypothesis of an increased availability of
vaccine vials put at disposal of European countries. We statistically assign additional vaccine
doses based on a set of re-distribution schemes which progressively allocate a larger (smaller)
number of vials depending on the vaccine-to-infected ratio of each country.
We build our model on an heterogeneous, spatial, temporal, and network set of covariates. In

particular, we rely on three main data sources of spatio-temporal human mobility patterns: (a)
Facebook data, a collection of phone-tracking-based datasets measuring the amount of individu-
als moving between each country’s administrative regions; (b) Google data, a phone-tracking
based source of mobility data, which registers daily changes in mobility across location categories,
namely retail and recreation, grocery stores and pharmacies, workplaces and transit stations,
tracking the trends of people’s change in movement throughout the pandemic period; (c) air trans-
port data, and particularly international European air transport data on the number of passengers,
collected at airport level, to proxy the number of individuals flowing across countries. We further
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consider a set of spatially distributed epidemic covariates: (a) disease risk factors, which comprise
heart disease, diabetes, and smoke addiction; (b) social and demographic covariates, which in-
clude population density, median age, and life expectancy.
We differ from the literature employing self-exciting point processes for COVID-19 epidemic

modelling in four main aspects. First, we exploit techniques borrowed from network theory to
build a robust statistical model which is able to take into account for the direct impact of the net-
work of human mobility patterns on the spread of COVID-19. Second, our spatio-temporal self-
exciting point process is based on a large and heterogeneous set of predictors of the COVID-19
contagion dynamics, such as mobility data, spatial covariates, and government policy actions,
and additionally include a key covariate of interest to policy making—namely, the daily number
of vaccines inoculated—which can be tuned to conduct scenario analysis. Third, we build upon the
predictions of the illustrated method a number of scenario analyses corresponding to different
counterfactual health impacts of several coordinated policy interventions in terms of supply of
vaccine vials. Finally, differently from the extant literature which is mainly focused on modelling
the evolution of the epidemic in the United States, we focus on 27 European countries.
To the best of our knowledge, there is no study yet on spatio-temporal COVID-19 contagion

modelling throughHawkes processes enhanced bymobility networks considering European coun-
tries. In addition, our model provides a novel continuous monitoring tool able to dynamically as-
sess the health impact of setups of different policy options, bymeans of statistically robust, tailored
scenario analyses and re-distributive schemes based upon any potentially effective epidemic-
tuning covariates of interest.
Our empirical findings show that the proposed model achieves satisfactory performances in

termsof predictive accuracy.Wedemonstrate that a large set of epidemic covariates, such as human
mobility patterns,mobility trends, vaccine doses inoculated, government policy stringency, disease
risk factors, and demographic factors, are significant predictors of the number of new COVID-19
reported cases in Europe. Our policy scenario analysis shows that an increased number of vaccines
put at disposal of European countries would, in any case, cause a slowdown in infection rates, al-
though the effects of different hypothesized re-distribution schemes are crucial to the development
of the epidemic. According to our scenario analysis, we discover that the best re-distribution option
consists of distributing most resources to countries with lower vaccine-to-infected ratios, though,
interestingly, the effects of re-distributing schemes are non-linear.
The remainder of this paper is structured as follows. Section 2 describes the data employed in

this study. Section 3 presents the proposed statistical methodology. Section 4 illustrates our empir-
ical results. Section 5 concludes.

2 Data

We consider a large database, standardized for European countries, coming from different sour-
ces: (i) COVID-19 diffusion and vaccine data; (ii) Google mobility data; (iii) Facebook mobility
data; (iv) airline transport data; (v) spatial country level data; and (vi) government policy data.
The considered time period ranges from 1 September 2020 to 30 May 2021, a time span which
allows to study multiple waves of COVID-19 infections. We present below a short description
of each data source.

2.1 COVID-19 diffusion data
The COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns
Hopkins University releases a daily report about COVID-19 cases registered at country level
over time. From the dataset, we extract the total number of new confirmed COVID-19 cases in
each country. This will be the response variable in our analysis.

2.2 COVID-19 vaccine data
A first relevant explanatory variable of COVID-19 diffusion is the level of vaccination. Data on the
total number of vaccines inoculated for each country at the daily level are collected from the
COVID-19 Data Repository maintained by the Center for Systems Science and Engineering at
Johns Hopkins University.
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2.3 Google mobility data
A particular type of mobility data has been made available by Google. This consists of a phone-
tracking mobility data which aggregates anonymized information from users who have turned
on their location history setting and measures the daily changes in mobility with respect to a base-
line value, for each country, across different location categories, including retail and recreation,
grocery stores and pharmacies, workplaces, and transit stations. While Facebook and airline
transport data measure the flows of people within and between countries, Google data measure
the variation in movement trends across different locations. The baseline value represents the me-
dian values on a 5-week period from 3 January 2020 to 6 February 2020, a ‘normal’ business
period.

2.4 Facebook mobility data
Facebook hasmade available the ‘Coronavirus Disease PreventionMaps’, as a part of its ‘Data For
Good’ programme, a collection of dynamic spatio-temporal datasets illustrating, within each
country, population commuting patterns over the COVID-19 period. The maps use anonymized
and aggregated data on mobile-phone-based geo-localized movements of people having their geo-
positioning option enabled within time intervals of 8 hr, which we aggregate to daily frequencies.
We consider mobility flows both between and within the different administrative regions of a
country. It is worth mentioning that these data are available at a higher frequency, paving the
way for future analyses via multivariate time-series models—see, e.g., Giudici and Pagnottoni
(2019)—which could enable to assess impacts in a more timely manner.

2.5 Airline mobility data
To capture flows of individuals between different countries, thereby complementing Facebook
data, we consider data from the Air Transport Statistics database provided by EUROSTAT, on
a yearly basis. These data are collected at the airport level and describe the number of passengers
flying between different airports. We focus on intra-European transportation between countries
during 2019 and 2020. The data consist of origin-destination matrices whose element (i, j) repre-
sents the number of passengers moving from i to j, where a passenger is defined as any person, ex-
cluding on-duty members of the flight and cabin crews, who makes a journey by air between two
airports.

2.6 Country data
We also consider country specific demographic covariates which are good candidate predictors of
the spread of the COVID-19 disease. We consider the population density, median age, and life ex-
pectancy. Moreover, we also consider health risk factors which can worsen the COVID-19 symp-
toms such as the heart disease propensity, the percentage of diabetics, and the percentage of
smokers (male and female). These variables are collected fromOurWorld in Data and are updated
yearly.

2.7 Government policy data
The Oxford COVID-19 Government Response Tracker collects publicly available information on
a set of indicators of country specific government responses—see Hale and Webster (2020) and
Petherick et al. (2020). Eight of the policy indicators (C1–C8) record information on a number
of preventive containment and closure policies, such as school closures and mobility restrictions.
Four of the indicators (E1–E4) record economic policies, such as income support to citizens or pro-
vision of foreign aid. Seven of the indicators (H1–H7) record health system policies such as the
COVID-19 testing regime, emergency investments into healthcare and, most recently, vaccination
policies.

2.8 Data summary and pre-processing
We first consider the COVID-19 diffusion data, the response variable, whose behaviour in time we
aim to explain and predict. In Figure 1, we show the time-series of the total number of COVID-19
reported cases over the period 1 September 2020 to 30May 2021. From Figure 1, the presence of
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two marked infection peaks in Europe emerges, one in November 2020 and the other one at the
beginning of April 2021. There is also evidence of a further peak straddling the two years 2020 and
2021, though this one has affected countries with dissimilar intensities, and with particular
strength in UK and Spain. In addition, notice that the infection curves tend to rapidly decrease after
the last registered peak of April 2021.
As far as the explanatory variables are concerned, in Figure 2 we show the dynamics of the total

number of COVID-19 vaccines inoculated over the period 1 September 2020 to 30 May 2021.
Figure 2 shows the rapid increase of vaccines particularly from April 2021, which can be easily
correlated to the decrease of cases seen in Figure 1.
The use ofmobility data as explanatory variables requires the construction of tailored regressors

which we obtain by means of graph theory. In particular, mobility flows consist of connectivity
matrices, meaning matrix-valued data containing the number of individuals flowing from admin-
istrative region i to administrative region j. Therefore, it is imperative to summarize this informa-
tion, as it cannot be included into a regression model given the matrix nature of data. The same
holds for the airline data, which still consists of connectivity matrices.
Mobility flows can be represented as a graph G = (V, E), where the vertices in V are regions or

countries. The edges inE represent commuting flows from one node to another, i.e., the number of
people moving from one region (or country) to another. The mobility graph can then be repre-
sented by the weighted adjacency matrix G ⇔ W(G) = [wod], in which the entry wod is equal to
the number of people moving from o to d.
The information contained in mobility graphs can be summarized by a projection method, such

as PCA.However, while Googlemobility data are defined as deviations from a benchmark and can
therefore take on any value into the set of real numbers, Facebook and airline are non-negative,
discrete variables. To project them in a lower dimensional space, we need to extend principal com-
ponents analysis to the more general NNMF—see, e.g., Lee and Seung (1999) and Pecora et al.
(2016). NNMF has been widely applied in statistical learning to a number of different areas,
such as pattern recognition (Li et al., 2001), multimedia data analysis (Cooper & Foote, 2002),
text mining (Pauca et al., 2004), classification (Lee et al., 2009), and clustering (Sha et al.,
2002). The method consists of factorizing a matrix W into two matrices, B and L, such that
both matrices have no negative elements, i.e., B ∈ RK×F and L ∈ RF×T . To obtain a summary
measure, we can set F = 1 so that the element Bi corresponds to the variable factor and the element
Li represents the time factor.

Figure 1. Time evolution of newly infected in European countries, aggregate. The figure shows the dynamics of the
7-day moving average of the total number of new COVID-19 reported cases in the 27 European countries
considered, over the period 1 September 2020 to 30 May 2021.
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The application of PCA (Wold et al., 1987) to the Google data andNNMF to the Facebook data
leads to themobility variables represented in Figure 3, whichwe present for two selected countries.
In particular, results are illustrated for Germany (DE) and Italy (IT), given the fact that Germany is
the most populated country in the sample, whereas Italy is the country which has suffered most
infection counts, especially during the first wave of COVID-19. The representation of Google
and Facebook mobility variables for all countries can be found in Online Supplementary
Material, Figures S3 and S4 reported in the web-based supplementary information. A similar pro-
jection can be obtained for the airline data, which we illustrate in Online SupplementaryMaterial,
Figure S2 of the web-based supplementary information as well, together with a joint visualization
of the mobility flows between countries (airline mobility data) and within countries (Facebook
data), for each analysed European country, in Online Supplementary Material, Figure S1. Such
summary measures will be employed as explanatory factors of the COVID-19 infection counts.
Figure 3 shows how the nationwide lockdown measures imposed concomitantly with the epi-

demic growth has exerted dramatic impacts on different dimensions of humanmobility. The upper
panels illustrate the geographic distribution of changes in human mobility trends, provided by
Google, for groceries, parks, residential areas, retail and recreation sites, groceries and pharma-
cies, transit station and workplaces. People’s movements to retail and recreation sites, given their
non-essentiality, were the ones most hardly hit by the imposition of lockdown measures, along
with those to transit stations and workplaces. While movements to parks do highly vary over
time, those to residential areas and retail stations fluctuate quite steadily. The lower panels
show the human mobility patterns, provided by Facebook, within and between administrative re-
gions. It is evident that lockdowns have also tied to the magnitude of commuting flows in a het-
erogeneous way, depending on the country under consideration. In any case, the mobility
within administrative regions was the most relevant part of human mobility over the considered
period: that is the reason why the NNMF almost perfectly emulates its behaviour.
We now consider the analysis of the country specific health and demographic explanatory var-

iables which are reported as heat-maps in Online Supplementary Material, Figure S5 of the web-
based supplementary information. The demographic and health risk variables can be summarized
by two separate projections, obtained applying NNMF, as illustrated in Figure 4. The main rea-
sons behind considering a summarized version of the health and demographic factors, rather than
modelling them as single covariates, are: (a) parsimony of themodel specification and (b) enhanced
predictive performance. As a matter of fact, including all variables as single covariates would

Figure 2. Time evolution of daily number of COVID-19 vaccines inoculated, aggregate. The figure shows the
dynamics of the total number of COVID-19 vaccinations in the 27 European countries over the period 1 September
2020 to 30 May 2021.
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sensibly increase the number of estimated parameters in the Poisson regression of each country,
which might even cause problems in the estimation, such as multicollinearity. Moreover, by per-
forming a separate estimation of the model which includes the above-mentioned variables as sin-
gle covariates, rather than modelling them as factors, we have obtained that reducing the
dimensionality of the model improves its predictive accuracy. Figure 4 shows that the risk factor
is more important for eastern European countries, such as Poland, Romania, and Hungary and,
conversely, the demographic factor matters more for western countries, such as France,
Germany, and Italy.
We finally illustrate the behaviour of the policy measures, as summarized by the overall strin-

gency index, as determined by the Oxford Policy Tracker. The index represents the daily level
of stringency of policies put in place by national governments. The possible values range on a scale
from 0 to 100, increasing with the degree of stringency of the policy mix adopted on each specific
date. Figure 5 shows that, for most countries, the highest stringency occurred during the central
part of the time period considered.

3 Methods

In this section, we illustrate our proposed methodology. First, we review self-exciting Hawkes
processes for epidemics modelling. Second, we introduce our proposal: a self-exciting point pro-
cess endowed with temporal, mobility, and spatial covariates to explain the epidemic diffusion.

3.1 Background
In the context of branching point processes, the seminal paper by Hawkes (1971) introduces
self-exciting point processes, a class of birth processes which admits the possibility that current
events might be triggered by prior events, and that current events might trigger further future
events.

Figure 3. Mobility variables. The figure illustrates the dynamics of the Google (upper panels) and Facebook (lower
panels) mobility variables for two representative countries, namely Germany (DE) and Italy (IT). As far as Google
variables, they represent movements across different locations: grocery and pharmacies, parks, residential, retail
and recreation, stations and workplaces with coloured lines. Each variable quantifies the percentage reduction of
mobility with respect to a 5-week baseline corresponding to the period before the outbreak of the pandemic. In the
figure, the dashed line represents our considered summary measure: the first principal component summarizes the
Google variables. As far as Facebook variables, the figure illustrates the evolution of human mobility patterns
provided by the Facebook data, within and between administrative regions. In the figure, the dashed line represents
the first non-negative matrix factorization (NNMF) component which summarizes the Facebook variables.
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Consider a simple point process of event times ti ∈ [0, T), such that ti < ti+1, and a right-
continuous counting measure N(T ), defined as the number of events occurring at times t ∈ T .

The conditional intensity λ(t ∣ Ht) of a point process on the real half-line with respect to a filtration
Ht, i.e., the history of all events up to time t, is defined as

λ(t ∣ Ht) = lim
Δt�0

E[N(t, t + Δt) ∣ Ht]
Δt

(1)

with λ(t ∣ Ht) representing the infinitesimal rate at which the expected number of points are accu-
mulating at time t, given the history Ht of all points occurring prior to time t (see Daley &
Vere-Jones, 2003).

Figure 4. Risk and social factors non-negative matrix factorization (NNMF). The figure shows the NNMF values
associated to each country and derived by the social and risk factor variables.

Figure 5. Stringency index. The figure illustrates the time dynamics of the stringency index across the European
countries over the study period.
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The Hawkes process (see Hawkes, 1971; Hawkes &Oakes, 1974) represents one of the earliest
specifications of λ(t ∣ Ht), defined as the conditional intensity of the expected rate at which an event
occurs at time t, given all events that occurred previously at times t > tj:

λ(t ∣ Ht) = μ +
∑

t>t j,t j∈T
g(t − t j) (2)

The Hawkes model has been proposed in the field of seismology: see, for instance, Vere-Jones and
Ozaki (1982), to design the diffusion process of earthquakes, where the main shocks occur at a
constant baseline rate μ over time, and each earthquake at time tj raises the risk of future earth-
quakes (aftershocks) through the self-exciting function g(t − t j), which is often assumed to be
power law, exponential, or fat tailed distributed.
Model parameters are generally estimated by means of maximum likelihood. To this aim, the

log-likelihood of an observed sequence of events according to an estimatedHawkes model is given
by

L(Θ) =
∑n
i=1

log (λ(ti; Θ))− ∫
T
0 λ(t; Θ) dt (3)

where Θ is the set of model parameters and n represents the number of observations.
The literature has extended the self-exciting point process models in several ways over the last

few decades. In particular, by means of a multivariate extension of the self-exciting point process,
Ogata (1988) proposed the epidemic-type aftershock sequence model to examine the temporal dy-
namics of aftershock activities of earthquakes. Since then, self-exciting point processes have been
applied in different contexts such as crime forecasting (Mohler et al., 2011), events networking
(Fox et al., 2016), invasive plant infection (Balderama et al., 2012), war insurgencies (Lewis &
Mohler, 2011), finance (Adelfio et al., 2021), and epidemic infection (Meyer et al., 2012), giving
rise to a number of methodological improvements.

3.2 Proposal
Within self-exciting processes, the use of additional covariates to model the conditional intensity
of a given event has recently become important in the field of crime detection. In particular,
Reinhart and Greenhouse (2018) introduce a spatio-temporal self-exciting point process model
that incorporates spatial features, near-repeat and retaliation effects, along with triggering to
model the dynamics of crime. Mohler et al. (2018) propose a modulated Hawkes process which
exploits the incorporation of spatial covariates to construct crime-related social harm indices.
Park et al. (2021) analyse gang-related violent crime data using demographic and socio-economic
covariates. These studies share the idea of including covariates in the specification of the condition-
al intensity of the point process.
In this paper, we use an additional set of different types of covariates to model the occurrence of

SARS-CoV-2 cases. On the one hand, people commuting flows are key to determine the dynamics
of the virus spread, as larger levels of mobility are associated with higher diffusion of the epidemic.
On the other hand, spatial covariates such as cluster population density might also exert an effect
on the epidemic diffusion process, given that the more people are concentrated per unit of area, the
more likely the virus is able to spread across individuals.
Within the context of a self-exciting process, an infection can be attributed to two different com-

ponents: a background endemic component, coming from the constant rate μ, which is not im-
puted by the model to any prior infection; and a dynamic epidemic component, in which any
infection is generated by a previous one and can in turn generate new ones.
We assume that temporal and spatial covariates can affect only the epidemic component. This

assumption is consistent with the fact that the SARS-CoV-2 disease spread is driven mostly by per-
son to person contact rather than being contracted in an exogenous way by means of environmen-
tal factors. Our assumption implies, as noted by Reinhart (2018), that any departures from μ = 0
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must be interpreted as cases caused by unobserved infections or, in our case, by the inherent ten-
dency of a country to import infections from outside the borders.
More formally, given a set of spatio-temporal covariates zk(t) at time t for each country k, where

k = 1, . . . , K, we specify a self-exciting process with covariates as follows:

λk(t) = μk +
∑

t>t j,t j∈T
g(t − t j; zk(t)) (4)

In the endemic part of equation (4), we assume that the background infection rate μk is constant
over time but can vary across countries to capture possible differences in the baseline rate of oc-
currences across countries. Moreover, we also assume that each event at time tj increases the
risk of future events by means of the modified triggering function g(t − t j; zk(t)), which is assumed
to be separable into a structural component g1 (reproduction rate) and a non-structural compo-
nent g2 (inter-infection rate) (see Park et al., 2021), so that g(t − t j, zk(t)) = g1(zk(t))g2(t − t j).
We then assume that the structural component Gt

k = g1(zk(t)), which represents a reproduc-
tion rate, is a Poisson random variable, whose expected value is specified by a Poisson regression
model as

E[Gt
k ∣ zk(t), θ] = e(θ

′zk(t)) (5)

The non-structured component g2, instead, is assumed to represent an inter-infection time dis-
tribution, which, consistently with the literature on epidemics (Cowling et al., 2010; Hellewell
et al., 2020; Obadia et al., 2012), can be assumed to follow a Weibull distribution
g2(t − t j; β, α) = (β/(t − t j))((t − t j)/α)

β e−((t−t j)/α)
β
, with β and α representing the shape and scale

parameters, respectively.
Following the previous assumptions, our model is therefore characterized by the set of param-

eters Θ = [θ, α, β, μk], whose log-likelihood can be expressed as

L(Θ) =
∑K
k=1

∑nk
i=1

pk(i, i) log (μk)− ∫
T
0 μk dt

{

+
∑nk
i=2

∑i−1
j=1

pk(i, j) log [g1(zk(t), θ)g2(t − t j ∣ β, α)]

{

− ∫
T
t j g1(zk(t), θ)g2(t − t j ∣ β, α) dt

}}
(6)

in which pk represent the branching probabilities for country k and, in particular, pk(i, i) is the
probability that case i was imported, whereas pk(i, j) represents the probability that case i was
caused by case j.
Note that the likelihood in equation (6) corresponds to the likelihood of K separate (non-

interacting) self-exciting point processes, for which covariates are aggregated at country level.
Maximizing the likelihood is therefore equivalent to separately maximize each of the k country
specific marginal likelihoods, with respect to the rate described in equation (4).
Accordingly, parameter estimation can be carried out for each country by means of EM algo-

rithm, which consists of an iterative alternation of an expectation step, in which the branching
probabilities pk are estimated, and a maximization step, during which the model parameters Θ =
[θ, α, β, μk] are updated bymaximizing the log-likelihood function. As noted by Lewis andMohler
(2011), the EM algorithm is equivalent to a projected gradient ascent on the likelihood of the
Hawkes process.
Specifically, within the expectation step, we estimate the branching probabilities pk(i, j) for each

country. Within the maximization step, the log-likelihood in equation (6) is maximized for each
country with respect to the model parameters Θ = [θ, α, β, μk], conditionally on the estimated
branching structure pk(i, j) derived from the expectation step. The maximization of the
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log-likelihood function in equation (6) boils down to three independent optimization problems.
The first consists of a Poisson regression of observations

∑nk
i=2 pk(i, j) on the spatial and mobility

covariates zk(t):

θ̂ : =
argmax

θ
Lθ =

argmax
θ

∑nk
i=2

∑i−1
j=1

pk(i, j)

[ ]
θ ′zk(t) − e(θ

′zk(t))

{ }
(7)

The second optimisation problem concerns the shape and scale parameters of the inter-infection
distribution:

β̂, α̂ : =
argmax
β, α

Lβ,α =
argmax
β, α

∑nk
i=2

∑i−1
j=1

pk(i, j) log [g2(ti − t j ∣ β, α)]

{ }{ }
(8)

where pk(i, j) is the weight of each inter-infection time observation ti, tj.
The third optimization problem concerns the background rate μk which is obtained from

μ̂k : =
argmax

μk
Lμk =

argmax
μk

∑nk
i=1

pk(i, i) log (μk) − ∫
T
0 μk dt =

∑nk
i=1

pk(i, i)
T

(9)

We remark that differently from the effect of spatial covariates, that of mobility covariates is
time-lagged: the infection time can start before, during, or after the onset of symptoms. In other
words, there exists a certain incubation period before which the disease becomes manifest after
the contact with an infected individual. To account for this occurrence, we consider the number
of new infections triggered by a previous infected case to be dependent upon the level of mobility,
but lagged in time. As reported, for example, by the European Centre for Disease Prevention and
Control, the infection time duration of the SARS-CoV-2 disease is roughly 14 days (see ECDC,
2020). Thus, we let the delay of mobility covariates vary from 10 to 14 days and choose the
best lag order within this range in terms of predictive performance when considering the in-sample
estimation phase. We also remark that what presented so far can be extended in a Bayesian frame-
work, for example, following the non-parametric approach of Giudici et al. (2003).

4 Application

4.1 Model estimation
We have applied our proposed model to the described data. From an interpretational viewpoint,
the most important aspect of the model is the structural component of the epidemic part given by
the Poisson autoregression. The resulting parameter estimates, along with their standard errors,
associated t-statistics, and p-values, are contained in Table 1. As in Chiang et al. (2021), standard
errors and p-values are calculated from the Poisson regression in the M-step after the EM algo-
rithm reaches convergence.
The results in Table 1 show highly statistically significant coefficients. In particular, we find that

the largest negative statistically significant coefficient is that of the stringency index (stringency:
−0.049, p-value: <0.001), followed by the vaccine variable (vaccine: −0.0137, p-value:
<0.001). These signs are in line with the expectations. The sign of the airline factor coefficient
is also negative (airline factor: −0.0038, p-value: <0.001), differently from what would be ex-
pected a priori. This may be due to a reverse causal effect: when contagion counts are higher, travel
restrictions increase and become more selective, increasing the centrality of the most populated
countries. In addition, international contagion might have played role at the very beginning of
COVID-19, when travel bans were still not imposed, or during low stringency phases, rather
than during nationwide lockdowns. The remaining variables’ coefficients are all statistically sig-
nificant at all conventional significance levels and, as expected, positive. The highest magnitudes
are those associated to the Google and Facebook mobility variables, followed by the social factor,
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which reflects population size and density. The risk factor is also positive, but with a relatively
smaller magnitude, according to the model estimates.
To help interpretation, the Poisson regressionmodel can be fit dynamically, producing estimates

for each point in time t, based only on data available up to time t − 1. We set for this purpose an
estimation window width of 150 days. Figure 6 reports the resulting dynamic Poisson regression
coefficients for the explanatory variables that vary over time: vaccines (upper left), Oxford
Stringency Index (upper right), Facebook factor (bottom left), and Google factor (bottom right).
Figure 6 shows, in line with the expectations, the increasing importance of vaccines and the de-
creasing importance of stringency measures, as well as an increasing one associated to the
Facebook mobility factor.
For the sake of completeness, we also report the estimation results for the inter-infection and the

background parameters of the model. Figure 7 shows the time-series of the estimated dynamic
shape (α) and scale (β) parameters of the fitted Weibull distribution, along with the value of the
background rate (μc). Figure 7 shows that the shape and scale Weibull parameters remain of quite

Table 1. Poisson regression

Estimate SE t-stat p-value

Intercept 0.0247 0.0003 92.50 <0.001

Vaccine −0.0137 0.0001 −92.72 <0.001

Stringency −0.0469 0.0003 −150.72 <0.001

Facebook factor 0.0122 0.0002 64.29 <0.001

Google factor 0.0155 0.0003 55.32 <0.001

Airline factor −0.0038 0.0002 −20.76 <0.001

Risk factor 0.0014 0.0003 5.27 <0.001

Social factor 0.0146 0.0004 32.87 <0.001

Note: The table reports the Poisson regression coefficients (estimate), standard errors (SEs), test statistics (t-stat), and
p-values (p-value) obtained applying the model to the available sample.

Figure 6. Time evolution of the Poisson regression coefficients. The figure reports the regression coefficients
obtained from the dynamicmodel estimation and associated to the time-series of the number of inoculated vaccines
(upper left), Oxford Stringency Index (upper right), Facebook factor (bottom left), and Google factor (bottom right).
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comparable size over time, with a sharp decline over the periods ranging approximately from
November 2020 to April 2021. In the same period, the country infection background rate esti-
mates increase, almost counterbalancing the decrease in the inter-infection distribution parame-
ters. This indicates a lower performance of the model in capturing the variability of the
response variable. Indeed, our results show that, during the same period, the estimated branching
probability of an infection to be imported becomes larger, and, at the same time, that of being
transmitted lower. This may be a further explanation of the divergence in inter-infection and back-
ground parameter estimates, and in the lowering of the model’s predictive performance. For the
purpose of investigating the robustness of our results, we have replaced the Weibull distribution
of inter-infection with a Gamma distribution, as suggested by Obadia et al. (2012) and Chiang
et al. (2021). Results remain qualitatively unchanged—see Online Supplementary Material,
Figure S7 of the web-based supplementary information.
Before using the model for scenario analysis, a necessary step for policy decision-making is to

evaluate its predictive accuracy. The model is back-tested using a dynamic approach. For the in-
sample estimation, we have chosen consecutive timewindows of 150 days, each one shifted by one
week. For each of them, we have produced out-of-sample predictions for the following week. All
obtained predicted values are recorded and comparedwith the observed ones, from February 2021
to the end of the sample. For forecasting purposes, wemake use of the branching representation of
the Hawkes process. First, we simulate secondary events through the Poisson process based on its
background rate; namely, for each event, we simulate a Poisson random variable with mean
e(θ′zk(t)). Second, we draw the inter-event times of infections from the estimated Weibull distribu-
tion. Finally, we simulate 100 realizations of the Hawkes process to estimate its average intensity
forecast, as well as its associated confidence intervals.
Figure 8 shows the in-sample and out-of-sample predictions of newly reported COVID-19

cases, aggregated over the 27 European countries, for the period ranging from 1 September
2020 to 30 May 2021. The predicted values are compared with the actually observed ones and
are represented along with their associated confidence intervals. Additionally, we report the
same predictions for two selected countries, i.e., Italy and Germany. In Online Supplementary
material, Figure S6 of the web-based supplementary information, we report the results for each
country, which generate the aggregate predictions under analysis. Figure 8 shows that the differ-
ence between the one-week ahead predictions and the actual values is relatively small, and this is
confirmed by the predictive accuracy at the country level in Online Supplementary Material,
Figure S6 of the web-based supplementary information. Furthermore, notice that newly reported
cases of Germany seem to be more timely predictable than those of Italy. Additionally, for the pur-
pose of investigating possible under-dispersion in the model residuals, we report in Figure 9 a scat-
ter plot which compares the real infections with the predicted ones. As Figure 9 suggests the point
estimates are mostly aligned along the 45◦ line, thus indicating a limited under-dispersion.

4.2 Policy scenario analysis
In this section, we look into the future management of the pandemic and carry out a scenario ana-
lysis to model a hypothetical vaccination strategy to analyse the epidemic outcomes derived from

Figure 7. Estimation of the α, β, and μc parameters along time. The figure shows the estimates of the shape (α) and
scale (β) Weibull parameters obtained from themodel estimation (left) and the boxplots associated to the values of the
background rate (μc ) obtained frommodel estimation (right). For each time window, a background rate for each of the
European countries is estimated, and their values are reported in the boxplot within the corresponding period.
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the interplay between (a) an increase of the vaccine doses available in the countries and (b) a co-
ordinated re-distribution scheme which allocates the vaccines among the different countries.
More precisely, we evaluate the impact of different vaccination strategies by simulating the

number of infected individuals which would result after providing hypothetical additional doses
of vaccines. Ourmodelling strategy is composed by two steps: first, we increase the available quan-
tity of vaccines at each day t by a percentage q = {30, . . . , 100} and, second, we assign these add-
itional doses sorting countries in ascending order according to their vaccine-to-infected ratio and
apply a sigmoid function to create a vector of distribution weights.
More formally, let Mt ∈ RK be a sequence of real numbers indicating the vaccine-to-infected

ratio observed at day t among the K countries. We define the sequence sort(Mt) ∈ RK to be the

Figure 8. Predictions of newly reported COVID-19 cases. The left panel of the figure shows the aggregate
predictions of newly reported COVID-19 cases over the period 1 September 2020 to 30 May 2021. The first part of
the curves represents the in-sample estimates over the period from 1 September 2021 to 29 January 2021.
The second part of the curves represents the out-of-sample one-week ahead predictions over the period 30 January
2021 to 30 May 2021. The dotted curves represent the actual number of newly reported COVID-19 cases over the
same period. The right panel reports the predictions of newly reported COVID-19 case for Germany and Italy over
the same period.

Figure 9. Scatter plot of real infections and out-of-sample forecasts. The figure reports a scatter plot which
compares real infections with the predicted ones, along with their associated confidence intervals.
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result of sorting Mt, preserving duplicate elements. Let K, l ∈ N and for all 1 ≤ i ≤ K let mi
t ∈ R

and letMi
t = (mi

t)
K
i=1 be the vaccine-to-infected ratio sequence. LetB = (bit)

K
i=1 = sort(Mt).We define

Mt(l) to be the sequenceMt(l) = (ci)
l
i=1 of real numbers satisfying, for all 1 ≤ i ≤ l, ci = bK−l+i. Once

we have sorted the countries according to the position vector l, we use such vector to assign a
weight w according to a sigmoid function:

w(li) =
1

1 + e−s(−li−〈l〉)

where 〈l〉 is the average value of the position vector l and the parameter set s = {1, 10, 25, 50, 100, −
1, − 2, − 5, − 10, −25, − 50, − 100} defines the shapes of the sigmoid function.
Figure 10 shows the sigmoid function used to re-distribute vaccines among European countries

in our context. The sigmoid parameter set s generates different re-distribution schemes which as-
sign a weight to each country depending on its vaccine-to-infected ratio. Notice that positive and
low values of the parameter s generate a re-distribution scheme which gives less weight to the
countries having a low value of the vaccine-to-infected sequence, while negative and low values
of s assign more vaccines to the countries with corresponding low vaccine-to-infected ratio.
Relatively high values of s in absolute terms tend instead to assignmore evenly distributedweights.
The quantity of vaccine ṽit put at the disposal of country i at time t at each iteration, given the

value assumed by parameters q and s, can then be computed as

ṽit = vit +
q

100
w(li)∑
i w(li)

∑
i

vit (10)

where vit is the recorded amount of vaccine at disposal of the ith country at time t as in the dataset.
We evaluate the model on a grid composed by the different coordinates in the space q × s, record-
ing for each iteration the predicted evolution of the number of infected individuals in each country.
In this way, we come up with 144 (namely, 12 × 12) alternative policy scenarios along with the
corresponding health impact in terms of newly reported COVID-19 infections.
Figure 11 shows the percentage of daily avoided COVID-19 infections, with respect to the

benchmark case of q = 0 (no additional vaccine doses), as the number of total vaccines increases
and the re-distribution functions change according to the sigmoid parameter. The colour bar

Figure 10. Re-distribution function. The figure shows the sigmoid function used to re-distribute vaccines among
European countries. In particular, the sigmoid parameter s generates different re-distribution schemeswhich assign
a weight to each country depending on its vaccine-to-infected ratio. The x-axis defines the ranking of countries
according to their vaccine-to-infected ratio in ascending order. The y-axis reports the weights (portions of additional
vaccines) assigned by the sigmoid function.
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assigns colours based upon the number of infections avoided (ranging from black to white as the
infection decreases in intensity). From Figure 11, as expected, increasing values of q, associated to
a higher number of vaccine doses available, produce a contraction of the epidemic spread. In con-
trast, the parameter s, besides affecting the allocation of additional doses, does not seem to exert
severe impacts on the number of infected individuals in relative terms.
To shed further light on the effect of policy parameters, we compare the estimated avoided in-

fections by discriminating among the effects produced by changes of q and s. To do so we average,
by rows and by columns, the matrix reported in Figure 11, which provides the avoided infection
for different pairs of values of q and s. Figure 12 shows, in the left panel, the contribution of the
increased vaccine procurement to the total infections avoided. The right panel reports the total in-
fections avoided depending upon different values of the sigmoid parameter s. From Figure 12, no-
tice that, despite the fact that increasing the parameter q substantially reduces the average
infections of European countries, the effect of the re-distribution schemes is evident. Indeed, des-
pite the infection reduction effect is not linear as a consequence of changes in s, we observe that an
inverse re-distribution scheme (low and negative values of s), which allocates most of the addition-
al doses to countries with a low vaccine-to-infected ratio, is able to reduce infections more than a
direct scheme, which rewards countries with a high ratio (low and positive s values). In themiddle,
a neutral scheme (high s values in absolute terms) more evenly assigns additional doses to
countries.

5 Concluding remarks

Human mobility plays a key role in the COVID-19 contagion dynamics. The information con-
tained in mobility networks is crucial to understand the drivers of contagion and to build accurate
statistical models for the spread of epidemics, which can be used to make predictions and for
decision-making purposes.
Against this background, we propose a network-based spatio-temporal statistical model, based

on self-exciting point processes, enhanced with a large set of covariates, which include those de-
rived from mobility patterns. In this way, we can effectively investigate the impact of mobility co-
variates on the development of the epidemic.
The application of our methodology to the reported COVID-19 cases in European countries

shows that our methodology provides satisfactory predictive performances. We discover that hu-
man mobility networks, vaccine doses, and government policies, along with disease and demo-
graphic risk factors, are all significant predictors of the number of new COVID-19 reported cases.

Figure 11. Simulation of infection avoided for European countries in different scenarios. The figure shows the
average daily infection avoided as total vaccines increase from 30% to 100% of the actual doses and the
re-distribution functions change according to the values assumed by the sigmoid parameter. The colour bar maps
colours into infection avoided.
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In addition, we conduct a policy scenario analysis on the number of vaccine doses put at the dis-
posal of European countries, under different procurement schemes. The policy scenario analysis
highlights that an increasing number of vaccines at the disposal of European countries would exert
a substantial decline in COVID-19 infection rates, with the distributional scheme adopted being a
relevant driver of contagion reduction. Overall, the most effective vaccine distribution policy op-
tion would be that of providing a larger part of resources to countries with relatively lower
vaccine-to-infected ratios.
We believe that our proposed approach could be employed as a continuous monitoring tool

which, based on the available data, is able to evaluate the health impacts associated with different
setups of policy measures that aim at preventing disease contagion.
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covid19/mobility/, country data available at https://ourworldindata.org/coronavirus, government
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Figure 12. Simulation of avoided infections due to vaccine doses increase (left) and distributional effects (right). The
figure shows, in the left panel, the contribution of an increased vaccine procurement to the total infections avoided.
The right panel reports the total infections avoided by discriminating across different values of the sigmoid
parameter s.
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