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Abstract

Background: The global impact of COVID-19 and the country-specific responses to the pandemic provide an
unparalleled opportunity to learn about different patterns of the outbreak and interventions. We model the global
pattern of reported COVID-19 cases during the primary response period, with the aim of learning from the past to
prepare for the future.

Methods: Using Bayesian methods, we analyse the response to the COVID-19 outbreak for 158 countries for the
period 22 January to 9 June 2020. This encompasses the period in which many countries imposed a variety of
response measures and initial relaxation strategies. Instead of modelling specific intervention types and timings for
each country explicitly, we adopt a stochastic epidemiological model including a feedback mechanism on virus
transmission to capture complex nonlinear dynamics arising from continuous changes in community behaviour in
response to rising case numbers. We analyse the overall effect of interventions and community responses across
diverse regions. This approach mitigates explicit consideration of issues such as period of infectivity and public
adherence to government restrictions.

Results: Countries with the largest cumulative case tallies are characterised by a delayed response, whereas countries
that avoid substantial community transmission during the period of study responded quickly. Countries that recovered
rapidly also have a higher case identification rate and small numbers of undocumented community transmission at
the early stages of the outbreak. We also demonstrate that uncertainty in numbers of undocumented infections
dramatically impacts the risk of multiple waves. Our approach is also effective at pre-empting potential flare-ups.

Conclusions: We demonstrate the utility of modelling to interpret community behaviour in the early epidemic
stages. Two lessons learnt that are important for the future are: i) countries that imposed strict containment measures
early in the epidemic fared better with respect to numbers of reported cases; and ii) broader testing is required early
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in the epidemic to understand the magnitude of undocumented infections and recover rapidly. We conclude that
clear patterns of containment are essential prior to relaxation of restrictions and show that modelling can provide
insights to this end.

Keywords: SARS-CoV-2, COVID-19, Stochastic epidemiological models, Approximate Bayesian computation,
Sequential Monte Carlo

Background
A unique feature of the coronavirus disease 2019
(COVID-19) pandemic has been the rapid and widespread
availability of data through online platforms [1–3]. These
data enable the analysis of various patterns of outbreak
containment, and provide an unparalleled opportunity to
learn how to respond to a new surge of COVID-19 or
future pandemics. It is important to learn from the past to
prepare for the future.
Travel restrictions, increased hygiene education, social

distancing, school and business closures, and complete
lockdowns [4–6] are examples of non-pharmaceutical
intervention (NPI) strategies that many countries have
introduced to slow transmission rates and relieve pres-
sure on healthcare systems in the absence of a vaccine
or treatment for COVID-19 [7]. Modelling is at the fore-
front of determining the efficacy of these measures in
reducing severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) transmission and quantifying risk of future
outbreaks along with their potential severity [8–11]. This
understanding is crucial given the deleterious sociological
and economic impacts of many NPIs [4, 12–14].
The global modelling community has provided insight

into the transmissibility of SARS-CoV-2 [15–17], global
risk of spread through transport networks [18, 19],
forecasting and prediction [20–22], and evaluation of
interventions [10, 23]. Techniques include: empirical
approaches such as phenomenological growth curves
[22]; data-driven, statistical approaches using non-linear
autoregressivemodels [24]; andmechanisticmodels based
on epidemiological theory [25] with various extensions
[26, 27].
We aim to learn about the global pattern of behaviour

among countries based on the trajectories of reported
cases, recoveries and fatalities as provided by Johns
Hopkins University (JHU) [18, 28]. Notwithstanding
acknowledged drawbacks in relying on reported cases [2],
we argue that such data will be the main source of infor-
mation for government and health managers in future
scenarios.We avoid imposing the specific complex history
of intervention measures for each country by including
a novel regulatory mechanism that captures the changes
in community behaviour in response to rising confirmed
cases. Through model calibration, we infer the country
specific response timing and strength. As a result, we

analyse the overall effect of interventions and community
responses across diverse regions.
We characterise the response of 158 countries to the

COVID-19 outbreak for the period 22 January to 9 June
2020. This time frame encompasses the period during
which initial measures were imposed by most countries
and the period in which some countries started to relax
restrictions. Our analysis is a broad assessment of the
global response to the COVID-19 pandemic, and reflects
how countries in early phases of outbreak may have
adjusted their strategies to reduce the time to recovery.
We find that very large outbreaks are characterised by
a delayed response, whereas countries that observed a
decrease in active cases during the early period of study
are characterised by high case identification rates. For
many countries, the transmission rates were declining in
the later period of the study. However, large unobserved
infected population counts were estimated. Our analysis
confirms that multifaceted approaches that include NPIs,
increased testing, contact tracing, isolation and quaran-
tine measures are effective in reducing the severity of
COVID-19 outbreaks world-wide. We also demonstrate,
that the magnitude of undocumented cases substantially
impacts uncertainty in risks of subsequent flare-ups after
restrictions are relaxed. We conclude that wider testing is
essential to reduce this uncertainty to reliably evaluate risk
of future waves.

Methods
Ethics
Ethics approval was not required for this study because
data are publicly available from the JHU coronavirus data
repository [1] (https://github.com/CSSEGISandData/
COVID-19). These data are daily reported confirmed
case, recovery, and death numbers that do not contain
any confidential or identifiable patient data. Theses
publicly available data have been widely utilised by
governments, news outlets and other epidemiological
studies.

Data summary
Daily counts of reported confirmed COVID-19 cases,
recoveries and deaths for each country are obtained
from the JHU coronavirus resource center [1, 18] (pub-
licly available at https://github.com/CSSEGISandData/

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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COVID-19). We refer the reader to the “Discussion”
section for comments on this data source. Population data
for 2020 were obtained from United Nations Population
Division estimates [29].
We analyse threedifferent time periods: i) 22 January–30

March; and ii) 22 January–13 April; and iii) 22 January–9
June. These periods are selected as they broadly repre-
sent the time period of the initial outbreak of COVID-19;
covering the initial exponential growth period, the first
epidemic peak, and subsequent initial recovery period of
many countries. We use these time points to look at the
changes in key model parameters relating to a countries
responses over time.
Countries are included in the analysis for a give time

period provided the cumulative number of confirmed
COVID-19 cases exceeded 100 at least one day prior to the
end of the particular analysis period. While the specific
threshold is empirically chosen as 102, the lower bound
on the initial case numbers is needed to ensure that the
infectious population is large enough for sufficient mixing
to occur so that a compartmental model is a reasonable
approximation (i.e., as threshold of 101 initial cases will
lead to poor approximations and 103 cases will miss the
early stages of the pandemic in many countries). The ini-
tial case number threshold should be exceeded at least one
day before the end of the analysis period to ensure there
are at least two observations in the time series for all coun-
tries. Using these inclusion criteria, we obtain N = 98
countries for the period of 22 January–30March,N = 121
countries for period of 22 January to 13 April, and N =
158 countries for the period 22 January–9 June. Countries
included in one period are not removed from subsequent
periods and lower values of N in earlier periods reflect
the fact that fewer countries had experienced outbreaks by
that time.

Analysis summary
For each country, i = 1, 2, . . . ,N , the JHU maintains a
time-series, Di =

[{
Ct,i,Rt,i,Dt,i

}
T≥t≥0

]
, where Ct,i, Rt,i,

and Dt,i are, respectively, the cumulative confirmed cases,
case recoveries and case deaths on day t for country i,
t = 0 is the first day such that Ct,i ≥ 100 and t = T
is the end of the study period. Since there are variations
in reporting protocols across countries and time as well
as data curation challenges [2], caution is necessary in
the interpretation of our analysis across all countries over
time.
Bayesian parameter inference is applied over three time

periods. The first period, 22 January to 30 March, is used
to assess the community response to the initial outbreak
of COVID-19. The second period, including data up to
13 April, encompasses the time period in which the effi-
cacy of the community response starts to become evident.

Finally, the third period includes data up to the 9 June,
in which many countries had started to relax restrictions.
We also consider in this analysis the prevention of future
waves, and highlight the sensitivity of system dynamics to
the uncertainty in unobserved infectious individuals.

Mathematical model
A stochastic epidemiological compartmental model is
used to describe the spread of COVID-19 within a sin-
gle country over the time period t ∈ (0,T]. The assumed
well-mixed population of size P is comprised of six com-
partments: susceptible, St ; infectious, It ; confirmed active
cases, At ; case recoveries, Rt ; case fatalities, Dt ; and
unconfirmed recoveries, Ru

t . The population that is sus-
ceptible to the SARS-CoV-2 infection, St , can be infected
by individuals from the unobserved infectious population,
It , including both symptomatic and asymptomatic infec-
tions. The active confirmed cases, At , are those who have
tested positive for COVID-19 but have not yet recov-
ered or died. We assume individuals in At are isolated
from the susceptible community (e.g., self-isolated, quar-
antined, or hospitalised) and no longer contribute to new
infections. Importantly, At need not be symptomatic, but
may have been identified from contact tracing protocols
or community wide testing. Rt andDt are, respectively, the
population of confirmed cases that recover or die. These
correspond to the recoveries and deaths reported in the
JHU data. Lastly, Ru

t is the population of infected individu-
als that recover or die without being tested for COVID-19;
these individuals no longer spread the infection but do not
contribute to the reported recovery and fatality counts.
The cumulative confirmed cases, as reported by the JHU,
can be obtained by Ct = At + Rt + Dt .
The populations St , It , and Ru

t are not observable and
are latent variables in our model. Therefore, strategies
for managing the spread of the virus, such as NPIs, are
informed by the observables, At , Rt , and Dt . Media cover-
age, official government information, and health authority
reports based on these observables may also affect the
behaviour of individuals. For example, frequent reports
on growing case numbers may increase voluntary self-
isolation; conversely, media coverage that downplays the
risk of infection or seriousness of the disease may lead to
widespread non-compliance with health advice or govern-
ment regulations. We model this dynamic introducing a
feedback loop within the transmission process.
A schematic of this system that highlights the state

transitions and the feedback loop is given in Fig. 1. The
dynamics can be described by the differential equations,

Ṡt = −g (At ,Rt ,Dt) StIt/P, İt = −(γ + ηβ)It + g(At ,Rt ,Dt)StIt/P,

Ṙu
t = ηβIt , Ȧt = γ It − (β + δ)At , Ṙt = βAt , and Ḋt = δAt .

(1)

https://github.com/CSSEGISandData/COVID-19
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Fig. 1 Schematic of epidemic model including a regulatory mechanism inducing a feedback loop. State transitions are marked by arrows with
superscripts indicating respective rate parameters. Here, observable quantities can inform individual behaviour to inhibit transmission in the latent
SIR model

Here, g(·) > 0 is the transmission rate function, γ > 0 is
the identification rate, β > 0 is the case recovery rate, δ >

0 is the case fatality rate, and η > 0 is the latent removal
rate relative to the case recovery rate. Initial conditions
for the observables, A0,R0,D0, are obtained from the JHU
data. To capture uncertainty in community spread at early
time we set I0 = κA0, where κ > 0 is the relative number
of unobserved cases. We assume initially Ru

0 = 0 and S0 =
P−C0− I0. Although Eq. (1) shows a deterministic system
for ease of interpretation, we apply a stochastic equivalent
for the analysis in this work (See SupplementaryMaterial).
The novel feedback mechanism provides a general

framework to describe how communities change their
behaviour as case numbers rise. This is similar to the influ-
ence of media reports that have been the subject of study
for influenza and HIV [30, 31]. However, our approach
includes a response strength parameter.
We define a so-called reporting function,

U(At ,Rt ,Dt) = wAAt + wRRt + wDDt , (2)

where the weights wA,wR,wD ≥ 0, represent the relative
weighting of observables in contributing to information
that influences individual behaviour, introduction of NPIs,
and subsequent compliance with government regulation
or health advice. In the context of this work, the weights
wA,wR, and wD have a very important interpretation, but
we first need to present more details of the feedback
mechanism.
We consider a nonlinear transmission rate of the form,

g(At ,Rt ,Dt) = α0 + αf (U(At ,Rt ,Dt)), (3)

where the response function, f (·) ∈[ 0, 1], is a decreasing
function with respect to U(·), α is the controllable trans-
mission rate such that αf (·) is a transmission rate that
decreases as the reporting function increases and α0 is
the residual transmission rate as f (·) → 0. The strength

of the response s = (1 − f (·)) × 100% is the percentage
reduction in community transmission, excluding residual
transmission α0.
For the response function we assume the form

f (U(·)) = 1
1 + U(·)n , (4)

where the parameter n ≥ 0 controls the rate of decrease
with respect to the reporting function. This form is
selected for two reasons. Firstly, it generalises techniques
that capture the influence of media reports during epi-
demics [30]. Secondly, the weights from Eq. (2) have an
important interpretation. This can been seen by noting
that values for At ,Rt and Dt that satisfy the condition
U(At ,Rt ,Dt) = 1, indicate the threshold case numbers
that leads to a response strength of 50%, that is, f (U(·)) =
1/2 leading to g(·) = α0 + α/2. The effect of the slope
parameter, n, and the weights are shown in Fig. 2. If
U(·) = 0, that is no cases are reported, or wA = wR =
wD = 0, indicating no perceived risk, then the model
reduces to an SIR model in the unobserved population
with transmission rate α0 + α.
For n ≤ 1 the shape of f (U(·)) starts to decline

rapidly levelling out (Fig. 2a). Increasing n > 1 results
in a decreasing sigmoid curve with an inflection point
at U(·) = 1 in which a population response strength
reaches 50%. Small n describes a population that does
not significantly reduce the transmission rate until the
U(·) is large. Conversely, larger n describes a population
that acts decisively as a response that rapidly reduces
transmission around U(·) = 1. Large values of weights
wA,wR,wD correspond to lower acceptable thresholds of
cases, including active, recovery and death counts. Lower
weights lead to delayed responses. That is, the parame-
ter n relates to the rate of intervention introduction and
the weights relate to decision thresholds and subsequent
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Fig. 2 Effect of parameters on the response function. a The effect of the slope parameter n. Note, as n increases, the faster f (·) → 0. For any n we
have f (·) = 1/2 (dashed black), at the point U(·) = 1 (dotted black). b The effect of weights on the response function for the special case
wA = wR = wD = w > 0 for constant n = 5. Note the point at which f (·) = 1/2 corresponds to At + Rt + Dt = 1/w. That is, as w increases the
lower the number of cases are required to influence the community to reduce the spread

compliance. Importantly, our approach does not distin-
guish between different NPIs and voluntary population
behaviour, but rather models the net effect that reporting
has on transmission rates.
We focus on the reporting function with wR = wD = 0,

that is, U(At ,Rt ,Dt) = wAAt (see “Discussion” section
and Supplementary Material for alternatives). Since At
will increase and decline over to course of an outbreak,
the model can exhibit oscillations that are essential for
understanding the potential for flare-ups and multiple
waves.

Bayesian analysis
Parameter inference
Ourmodel has up to 11 parameters: two transmission rate
parameters, α0 and α; case recovery rate β ; case identifica-
tion rate γ ; case death rate δ; relative latent recovery rate
η; response slope parameter n; the initial infected scale
factor κ ; and the weights of the reporting function wA, wR,
and wD. We assume wR = wD = 0 and infer the param-
eters θ = [α0,α,β , γ , δ, η, n, κ ,wA] (see Supplementary
Material for sensitivity analysis for the general case).
Using the daily case data, Di, for each country i ∈

[ 1, 2, . . . ,N], we infer model parameters within a Bayesian
framework by sampling the joint posterior distribution,

p(θ | Di) ∝ p(Di | θ)p(θ), (5)

where p(Di | θ) is the likelihood and p(θ) is the prior
distribution.
We rely on adaptive sequential Monte Carlo for approx-

imate Bayesian computation (SMC-ABC) [32–35] to
obtain approximate posterior samples since the likelihood

is intractable (Supplementary Material). We use inde-
pendent uniform priors, α0,α,β , γ , δ, η ∼ U(0, 1), n ∼
U(0, 20), κ ∼ U(0, 100), and log10 wA ∼ U(−6,−2).

Assessment ofmodel fit and prediction
The highly variable nature of the COVID-19 pandemic
makes it notoriously difficult to predict [20, 21]. Our pur-
pose is not to provide forecasts, but rather to capture the
dynamic effects of changes in community behaviour dur-
ing the outbreak. As a result, our model needs to be able
to capture the overall trends in daily cases.
Model fit is assessed through sampling the posterior

predictive distribution

p(Ds | Di) =
∫

p(Ds | θ)p(θ | Di) dθ , (6)

where Ds is simulated data as generated by the model.
We compute the 50% and 95% credible interval (CrI) of
p(Ds | D) by: 1) generating simulated data for each poste-
rior sample generated by the SMC-ABC sampler; and 2)
computing quantiles of the simulation state distribution at
each observation time.
The posterior predictive distribution is also used to

asses flare-up risk. After model calibration using data
up to 9 June, we continue simulations to 24 June and
obtain CrIs for oscillatory behaviour relating to localised
flare-ups and additional waves.

Parameter point estimation and uncertainty quantification
Parameter point estimates are also obtained from the
approximate posterior sample with the lowest average
discrepancy with the observed data (See Supplementary
Material). Parameter uncertainty is reported using 95%
CrI for the marginal approximate Bayesian posterior dis-
tributions (See SupplementaryMaterial). This uncertainty
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quantification encompasses all plausible parameter com-
binations within the achieved acceptance threshold of the
ABC-SMC method.

Correlation analysis
We use the point estimates to evaluate which factors have
had the greatest impact on the COVID-19 outbreak evo-
lution across countries. For each country, we manually
classify the state of the outbreak for each country on 13
April based on the trend in the daily reported cases and
active case numbers. These stages are: the growth stage–
characterised as an increasing trend in daily reported
cases numbers; the post-peak stage–characterised by
declines in daily case numbers, indicating the curve is
flattening; the recovery stage–characterised by declines
in active case numbers. Spearman’s rank-order correla-
tion coefficients are computed between each parameters
and observed data at T = 13 April (i.e., cumulative case
numbers, CT , recoveries, R, and deaths, DT ).

Results
Assessment of model fit
For most countries, the 95% CrI contains the daily case,
recovery and death data (See Supplementary Material),
and the 50% CrI overlaps the main trend in the data.
Exceptions to this are largely consistent with report-
ing delay effects, such as weekly seasonality as evident
in the daily cases for Germany (Figure S13). For some
countries, particularly those that responded rapidly (e.g.,
Australia Figure S10m), the early portion of the time
series sits in the tails of the 95% CrI and does not over-
lap with the 50% CrI. In a few cases, sudden spikes in
daily numbers (e.g., Recoveries in Germany Figure S13h)
are not completely captured within the 95% CrI, however,
the model does match overall trend well with many daily
numbers remaining within the 95% CrI. For example, the
possible decline in daily cases numbers for the United
States (Figure S19g) is captured by the lower bound of
the 95% CrI, however, the uncertainty of this trend on 13
April is indicated by the increasing upper bound. In some
extreme cases, such as changes in reporting method-
ology from China on 13 February [36] (Figure S12),
subsequent inaccuracies occur (Figure S12). We discuss
potential model improvements to account for this in the
“Discussion” section. Notwithstanding this, our model
appears to capture the overall trends in the trajecto-
ries to facilitate a broad comparative analysis of global
responses.
Example model outputs using the parameter point esti-

mate, based on the lowest expected data discrepancy
(See “Methods” section), are provided in Fig. 3 (See Sup-
plementary Material for other examples). In particular,
compare Fig. 3a–b with Figure S19g–i. Despite further
increases in daily cases being highly plausible on the

13 April, the point estimates appropriately exclude these
trajectories from the response analysis.

Characterisation of responses
Based on our correlation analysis (See “Methods” section),
these key parameters are: the case identification rate, γ ,
the relative initial undocumented infections, κ , and the
response weightwA. Therefore, we evaluate our parameter
inferences and point estimates for the three analysis peri-
ods. These results reveal that as the pandemic evolves, we
can learn more about the possible response histories and
latent infected populations. Figure 4 shows pairwise scat-
ter plots for the key parameters wA, γ , and κ for each of
the three analysis periods.
The interactions between parameters are complex, and

the differences between time periods deserves some inter-
pretation. However, we first highlight some overarching
trends across all time periods and then discuss specific
details. One clear trend is countries with that largest
numbers of cumulative cases (Fig. 4, top ten countries
for cumulative cases numbers indicated in red) tend to
have lower response weights, typically wA ≈ 10−4. Some
more extreme cases are as low as wA ≤ 10−5, for
example, the United States (USA; Fig 4d,g), Russia (RUS;
Fig 4g) and Brazil (BRA; Fig 4g). Small wA indicates a
delayed response in which the transmission rate did not
decline significantly until active cases, At , increased to
larger numbers. This is consistent with reported delays
in response across Europe and the United States [4]. Low
case identification rates, γ < 0.01, and higher relative ini-
tial unobserved infections κ > 10 are also characteristics
of countries will large cumulative confirmed case counts.
Countries that controlled the outbreak during the period
of study, such as Australia (AUS), New Zealand (NZL),
South Korea (KOR), and Taiwan (TWN) are characterised
by either rapid responses,wA > 10−3, lower relative initial
cases numbers, κ , or higher case identification rates γ .
On 30 March (Fig. 4a–f), the top ten countries hav-

ing the largest cumulative cases (highlighted red) are:
the United States (USA), Italy (ITA), Spain (ESP), China
(CHN), Germany (DEU), France (FRA); Iran (IRN); the
United Kingdom (GBR); Switzerland (CHE); and Belgium
(BEL). Of these, only China was recovering (highlighted
green). We also highlight South Korea (KOR) as the only
other country in recovery during this period, and Taiwan
(TWN) as substantial community outbreak was avoided
altogether. China and South Korea are characterised by
a higher identification rate (China γ = 0.96; 95% CrI
[0.01,0.90]; South Korea γ = 0.28; 95% CrI [0.17,0.93])
and lower relative initial undocumented cases (China
κ = 0.13; 95% CrI [0.08,35.2]; South Korea κ = 2.56;
95% CrI [0.50,5.93]) which is indicative of their strict
testing, isolation, and tracing regimes [37, 38]. Taiwan
(TWN), with a high response weight (wA = 10−1.9; 95%
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Fig. 3 Examples of model fit using parameter point estimates: a–b United States, c–d Germany, e–f Australia, g–h United Kingdom, i–j South Korea,
and k–l New Zealand. Vertical bars indicate daily reported cases (yellow) and deaths (red). The 50% (dark shaded region) and 95% credible intervals
(light shaded region) of the posterior predictive distributions are plotted against the observational data. Credible intervals are computed using
n = 100 stochastic simulations for the given point estimate. Full posterior predictive distributions are presented in the Supplementary Material

CrI
[
10−5.9, 10−1.1]) responded very rapidly, having estab-

lished strong public health response mechanisms after the
2003 severe acute respiratory syndrome (SARS) outbreak.
This is also reflected in a low level of initial undocumented
cases κ = 6.48 (95% CrI [0.18,21.95]) for Taiwan [39].
This is in stark contrast to Iran (IRN; κ = 33.79; 95%
CrI [4.7,91.41]) that experienced substantial community
transmission ahead of the first reported cases. The large
response weight for Iran is results in almost no effective
reduction in community transmission since α0 is much
larger than α (See Supplementary Material), which could
reflect the effects of large gatherings [7, 40, 41].
By 13 April, the situation changes as COVID-19 spreads

to more countries and response strategies are altered.
The top ten countries having the largest cumulative case
numbers had changed to: The United States (USA); Spain
(ESP); Italy (ITA); France (FRA); Germany (DEU); The
United Kingdom (GBR); China (CHN); Iran (IRN); Turkey

(TUR); and Belgium (BEL). By this time, Australia (AUS)
and New Zealand (NZL) were included in the ranks of
countries that were starting to recover. In Fig. 3d–e,
there is a substantial decrease in the response weight for
many of the worst affected countries (USA, wA = 10−5.2

95% CrI
[
10−5.7, 10−3.2]; FRA, wA = 10−4.7 95% CrI

[10−5.4, 10−1.3; ESP, wA = 10−4.4 95% CrI [10−4.7, 10−3.9;
DEU, wA = 10−4.4 95% CrI [10−4.8, 10−4.1; IRN, wA =
10−4.4 95% CrI [10−5.2, 10−1.8; ITA wA = 10−4.2 95% CrI
[10−5.8, 10−1.2; GBRwA = 10−4.0 95%CrI [10−5.1, 10−1.1;).
This indicates that, in light of data between 31 March–13
April, the community response to the outbreak was even
more delayed than earlier data indicated. The very high
values of wA for New Zealand (wA = 10−2.56; 95% CrI[
10−5.43, 10−1.25]) demonstrates that a rapid response has
been a key factor in keeping cumulative case number low
(CT < 1, 500). Many countries in the top ten cumulative
case numbers still had a larger point estimates for κ > 10
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Fig. 4 Pairwise scatter plots of point estimates of each assessed country (grey points) for the key parameters related to the management of an
COVID-19 outbreak up to: a–c 30 March; d–f 13 April; and g–i 9 June. a,d,g wA versus γ ; b,e,h wA versus γ ; and c,f,i κ versus γ . For each time period,
countries with the ten largest confirmed case counts are highlighted (red points) along with representative countries that were recovering or
managed to control the outbreak (green). Labels identify the country by ISO-3166 alpha-3 code

(Fig. 4e,f ), with the United Kingdom having the largest
point estimate of κ = 42.73 (95% CrI [0.46,91.52]), which
could be the result of early unobserved transmission prior
to abandonment of “herd immunity” targets in favour of
social distancing, and closing of non-essential business
and schools [10, 42]. Australia has a very similar char-
acterisation to the United Kingdom in terms of response
weight (wA = 10−3.36; 95% CrI [ 10−3.59, 10−3.22]) but
with much lower κ = 2.72 (95% CrI [0.24,2.78]) and
higher γ = 0.16 (95% CrI [0.16.0.99]) that likely reflects
fact that many of confirmed cases within Australia dur-
ing this period were imported cases and local commu-
nity transmission was low [17]. Small increases in γ for
Germany (γ = 0.15; 95% CrI [0.01,0.87]), Italy (γ =
0.10; 95% CrI [0.0,0.92]) and France (γ = 0.07; 95%

CrI [0.01,0.84]), and a large increase in γ for the United
States (γ = 0.21; 95% CrI [0.0,0.89]); this is possibly
a reflection of increased testing capabilities within these
countries between 31March to 13 April [43]. There is also
decrease in κ overall, indicating that the number of early
undocumented infections could be lower than previously
thought. Especially for Germany with κ = 3.27 (95% CrI
[0.44,38.63]).
In the period up to 9 June (Fig. 4g–h), Brazil (BRA),

Peru (PER), Russia (RUS) and India (IND) have replaced
Belgium (BEL), China (CHN), Iran (IRN) and Turkey
(TUR) in top ten countries for cumulative case num-
bers as the epicentre of the COVID-19 pandemic shifts
away from Europe. These four new countries in the top
ten cases list are characterised by low response weights
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(BRA, wA = 10−5.2 95% CrI
[
10−5.7, 10−1.1]; IND,

wA = 10−4.1 95% CrI
[
10−5.8, 10−1.0]; PER, wA = 10−3.8

95% CrI
[
10−5.6, 10−1.1]; RUS, wA = 10−4.9 95% CrI

[10−5.6, 10−4.7]), low identification rates (BRA, γ = 0.03
95% CrI [0.01,0.90]; IND, γ = 0.01 95% CrI [0.01,0.88];
PER, γ = 0.004 95% CrI [0.002,0.83]; RUS, γ = 0.05
95% CrI [0.02,0.92]) and high relative numbers of ini-
tial undocumented infections (BRA, γ = 79.34 95% CrI
[1.19,80.59]; IND, γ = 47.62 95% CrI [0.95,92.97]; PER,
κ = 15.47 95% CrI [0.80,89.93]; RUS, κ = 19.39 95% CrI
[0.44,61.41]). Many of the mainland European countries
were recovering and relaxing restrictions imposed by
intervention strategies, consequently the parameters for
Germany (DEU), Spain (ESP), France (FRA), and Italy
(ITA) have not changed much from the previous analy-
sis other than a further reduction in the estimated relative
initial undocumented case numbers for Germany (κ =
0.11; 95% CrI [0.01,43.80]). While the United Kingdom
(GBR) now has higher response weight, this is unfortu-
nately offset by a larger initial relative number of undoc-
umented infections. For the United States (USA), there
is a decline in the identification rate (γ = 0.14 95% CrI
[0.01,0.96]).

Overall assessment of the global response to the COVID-19
outbreak
Our correlation analysis (See “Methods” section) provides
an overview of the relationship between model parameter
estimates and the magnitude of the COVID-19 outbreak.
Here we use the point estimates computed for 121 coun-
tries for time period 22 January to 13 April. Figure 5
highlights the output from this analysis. The lower diag-
onal section of Fig. 5 show the distribution of point
estimates and outbreak stage classifications, whereas the
upper diagonal show the correlation coefficients.
The two parameters with the strongest correlation with

large case numbers, CT , are the response weight wA
(Spearman’s ρ = −0.4357), and the relative initial undoc-
umented cases numbers, κ , (Spearman’s ρ = 0.4439).
These parameters relate to the response behaviour of
communities at the early stages of the outbreak. Recall
At = 1/wA is the critical number of active cases to invoke
a response strength of 50%, corresponding to a reduc-
tion in transmission rate of α0+α/2

α0+α
× 100%. A smaller

value ofwA indicates a delay in community response, since
larger numbers of active cases are required to invoke a
response strength of 50%. Large values for κ are indica-
tive of community transmission occurring ahead of the
earliest reported cases. There is a strong negative correla-
tion between the identification rate γ and κ (Spearman’s
ρ = −0.7896), indicating that countries with strong test-
ing and contact tracing regimes were able to minimise
the amount of undocumented community transmission at
early time. The identification rate also has low negative

correlation (Spearman’s ρ = −0.2284) with the resid-
ual transmission rate, α0, meaning that countries with
stronger testing regimes also improved maximum effi-
cacy of other interventions. The response slope n had
only weak correlations with any other parameters. This
parameter relates to the rate of change in community
behaviour before and after the critical At = 1/wA point
(See Fig. 2). The weak positive correlation between κ

and n could mean that countries adopting a more grad-
ual introduction of interventions (lower n) also tended
to have less undocumented community transmission
initially.
While the three outbreak classification stages (See

“Methods” section) are not well separated in all param-
eters, there are a few trends to note. Countries in the
recovery stage tend to have lower residual transmission,
α0, larger regulated transmission, α, larger case recov-
ery and identification rates, β and γ , lower death rates δ,
and lower relative undocumented initial infections κ . For
countries in the growth stage of the outbreak, the converse
is true. The post-peak stage have, on average, parameter
values that sit between the recovery and growth stages.
Some countries that experienced large numbers of cases
in this analysis period are also in the post-peak or recov-
ery stage, whereas others in the growth stage had only
small numbers of cases at this time. In some case, such
as countries of South America, this analysis could have
helped highlight the importance of interventions early in
the pandemic.

Avoiding multiple waves
Reliably estimating the number of undocumented infec-
tions, including the extent of asymptomatic by infectious
case, is crucial to avoid flare-ups that potentially can
lead to multiple waves of COVID-19 spread [44]. Recent
evidence suggests asymptomatic individuals having a sub-
stantial role in the spread of COVID-19 [45]. Quantifi-
cation of uncertainty in the unobserved infectious pop-
ulation is crucial for planning the timing of easing of
restrictions.
Due to the form of our response function (See “Methods”

section), we model both how communities introduce and
subsequently relax interventions in response to active case
numbers. As At declines then f (·) increases to simulate
increased mixing of the population. The posterior predic-
tive distribution can demonstrate oscillatory behaviours,
the magnitude of which depends on the evolution of the
undocumented infectious population It . Figure 6 demon-
strates this. Uncertainty in the daily case numbers, driven
by parameter uncertainty and undocumented infectious
population uncertainty, pre-empts the small flare-ups in
numbers. To obtain this behaviour, all possible evolutions
of It that are consistent with the observed daily cases must
be taken into account.
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Fig. 5 Distributions of model parameter point estimates along with observered cumulative confirmed cases CT , recoveries RT and deaths DT at T =
13 April. Pairwise scatter plots on the lower diagonal indicate the stage of the COVID-19 outbreak for that country: growth stage (red circles),
post-peak stage (purple triangles), or recovery stage (green squares). Histograms on the diagonal show the distribution of parameters across all
countries within each outbreak stage. Spearman correlation coefficients between each point estimate and observed case numbers with the sign
and strength of the correlation indicated by the colour-map (positive correlations in red and negative correlations in blue)

This highlights the importance of conservative uncer-
tainty estimation for forecasting recovery from the pan-
demic. While it looks encouraging to see predictions that
indicate potential future declines in active cases counts,
the uncertainties in the number of undocumented cases
and model parameters indicate caution in predicting the
timing of consistent declines in active case numbers.
Therefore, it is essential that communities remain vigilant
in fast-evolving situations such as this.

Discussion
We have applied a novel stochastic epidemiological model
to characterise the response to the first wave of the
COVID-19 pandemic. We find that the worst affected
countries (in terms of confirmed case numbers), are char-

acterised by a delayed response (small wA), allowing case
numbers to rise before interventions became effective.
However, increased testing and isolation protocols (large
γ ) have demonstrably reduced the longer term impact, as
demonstrated by China and South Korea. Many countries
seem to be learning from these collective experiences,
with more rapid responses (large wA). Unfortunately, we
also identify that the number of undocumented cases
likely substantially exceeded the confirmed cases for many
countries (large κ). It is important to emphasise that we do
not make any specific guidelines for particular countries
in improving specific non-pharmaceutical intervention
(NPI) or testing strategies. However, in light of our analy-
sis, we advise that intervention mechanisms be mobilised
rapidly without waiting for large numbers of cases to be
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Fig. 6 Example of small secondary oscillations in model behaviour using the model fit against daily case data (yellow bars) for a Australia and b
South Korea up to 9 June (dashed line). The posterior predictive simulations are continues up to 24 June to demonstrate the uncertainty in potential
case increases after relaxation of restrictions. Actual daily case numbers for the period 10–24 June (red bars) also demonstrate increases within the
credible intervals (dark blue 50% CrI; light blue 95% CrI)

confirmed. This has been a key characteristic of countries
that have successfully managed the initial outbreak, such
as Australia, New Zealand and Taiwan.
The data on reported daily cases from the Johns Hop-

kins University coronavirus resource center have some
limitations [2]. Firstly, when aggregated at a country level,
these data do not take into account high levels of spa-
tial heterogeneity. To account for potential bias, future
work could consider a sensitivity analysis on the level
of individual cities or provinces where available. The
delay between onset dates and reported dates for new
case also potentially introduces bias and data spikes (as
noted in “Methods” and “Results” sections). While we do
apply any corrections for this reporting delay, techniques
to resolve this problem could be considered from the
studies of Influenza and Dengue epidemics [46]. Lastly,
the Johns Hopkins data does is not curated to distin-
guish between cases acquired through local transmission
as opposed to imported cases. Further modelling exten-
sions that account for details captured in alternative data
sources, such as the European Center for Disease Control
and Prevention (ECDC) [3], should also be considered.
We focus on tracking model parameter estimates in

time. Here, countries are included as outbreaks occur.
Partitioning countries based on geographical location is
another possibility for future exploration. Such separa-
tion may highlight overall differences in response patterns
between different global regions. For example, how do the
response trends differ as the pandemic moved from Asia
to Europe and then to the Americas?
Our model, like any model, has fundamental assump-

tions that are necessarily introduced. We treat each
country as a single well-mixed population. While our
approach does include important features such as undoc-
umented infections and a variable transmission rate, more

advanced analysis could be performed by considering dis-
ease spread through a network [9, 47–49] of well-mixed
populations, such as provinces, states or cities. This would
assist is capturing social factors that could also influence
COVID-19 transmission, such as spatial variation in pop-
ulation density and large population movement such as
those that occur during times of festival [5, 40]. We also
treat each country as a closed system, whereas realistic
sources and sinks through inclusion of an international
travel network could enable us to track the impact of
decisions of one country on connected countries.
Other details of the model could also be extended. We

treat active confirmed cases as non-infectious due to quar-
antine and isolation. In reality, active confirmed cases can
still spread the virus to medical staff. We also apply the
reasonable approximation that there is no re-detection
or re-infection, however, new evidence is questioning the
validity of this assumption [42, 45, 50]. It is also pos-
sible that seasonal effects related to climate could also
cause transmission rates to change, although the evi-
dence suggests that this is not a substantial effect in
the pandemic stage [51]. A finer granularity of classes
of susceptible individuals (i.e., at risk), incubation peri-
ods, severity of symptoms, and climate effects would also
enable more detailed analysis for an individual country
[17, 21]. However, our reduced set of classes and inter-
actions represents a trade-off between realism and broad
applicability to worldwide data. A Bayesian hierarchi-
cal modelling approach could also be applied to better
capture heterogeneity across countries.
Future work should also consider methods that account

for heterogeneity in terms of population distribution, age-
structure, socio-economic factors and cultural aspects
within individual countries. This is particularly true for
continental scale countries withmany diverse cultures like
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Brazil and India. While the net effects of many of these
factors will be captured in the rate parameters α and α0,
bias in parameter inferences may occur without explicit
consideration of non-uniform transmission patterns. As
a result bias correction factors may need to be derived.
Interactions with other epidemics may also introduce bias
in countries that are experiencing other outbreaks beyond
COVID-19, such as Brazil [52].
Our model framework is flexible through the inclusion

of a response function (See “Methods” section) in the
virus transmission mechanism and may be extended to
other scenarios. In this manuscript, we have only consid-
ered the case of a response dependent on the number of
active confirmed cases, leaving a sensitivity analysis for the
more general from for the Supplementary Material. This
response function could be further extended to include
economical factors or be modified to be a function of state
and time. This would enable a wide range of behaviours
to be explored, such as specific timings of enforced NPIs,
and subsequent lifting of restrictions when active case go
below a threshold.

Conclusions
Our work confirms that a multi-pronged approach to
combat COVID-19 is essential. Firstly, early introduc-
tion of testing and effective contact tracing protocols
and quarantine effectively reduces the uncertainty in the
unobserved infected population (i.e., low κ and high γ ).
Intervention strategies are also essential and are most
effective when introduced early (high wA). These results
demonstrate the utility of modelling combined with high
quality, immediately available data for providing insight
into the early stages of the pandemic.
It is hoped that our work might be used to inform future

responses to outbreaks of COVID-19 or other pandemics.
The message is clear: to avoid multiple waves we must not
be complacent in response to an outbreak as the earliest
confirmed cases arise. We also highlight the importance
of wider testing to effectively reduce uncertainty in pre-
dictions of case numbers, recoveries and deaths.
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