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Abstract
Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the identification of functional modules in
PPI networks that show striking changes in molecular activity or phenotypic signatures becomes of particular interest to reveal process-specific
information that is correlated with cellular or disease states. This requires both the identification of network nodes with reliability scores and the
availability of an efficient technique to locate the network regions with the highest scores. In the literature, a number of heuristic methods have
been suggested. We propose SEMtree(), a set of tree-based structure discovery algorithms, combining graph and statistically interpretable
parameters together with a user-friendly R package based on structural equation models framework.

Results: Condition-specific changes from differential expression and gene–gene co-expression are recovered with statistical testing of node,
directed edge, and directed path difference between groups. In the end, from a list of seed (i.e. disease) genes or gene P-values, the perturbed
modules with undirected edges are generated with five state-of-the-art active subnetwork detection methods. The latter are supplied to causal
additive trees based on Chu–Liu–Edmonds’ algorithm (Chow and Liu, Approximating discrete probability distributions with dependence trees.
IEEE Trans Inform Theory 1968;14:462–7) in SEMtree() to be converted in directed trees. This conversion allows to compare the methods in
terms of directed active subnetworks. We applied SEMtree() to both Coronavirus disease (COVID-19) RNA-seq dataset (GEO accession:
GSE172114) and simulated datasets with various differential expression patterns. Compared to existing methods, SEMtree() is able to capture
biologically relevant subnetworks with simple visualization of directed paths, good perturbation extraction, and classifier performance.

Availability and implementation: SEMtree() function is implemented in the R package SEMgraph, easily available at https://CRAN.R-project.
org/package=SEMgraph.

1 Background

The biological function on the molecular level emerges from
the complex interaction of biological entities of a cell.
Specifically, different types of Omics-data can interact in
many various ways with each other in dependence on the tis-
sue type and the environmental condition of an organism.
The interactions among biological molecules can be broadly
categorized into three types of networks: metabolic networks,
transcriptional regulatory networks, and protein interaction
networks (Vidal et al. 2011). These networks need to be in-
ferred from the experimental observations generated by differ-
ent high-throughput platforms, including next-generation
sequencing, proteomics, and microarrays.

The goal is to identify active modules, i.e. subnetworks
enriched in interactions and in nodes of interest (showing
condition-specific changes). Then, these active modules facili-
tate the investigation of the perturbed cellular responses, as
functional modules are the building blocks of the cellular pro-
cesses and pathways (Mitra et al. 2013). To identify these
subnetworks, numerous methods have been suggested. These
methods can typically be divided into two categories: respon-
sive subnetwork identification and subnetwork extraction
started by seed genes (or nodes).

For the first category, a number of algorithms and tools are
created by combining genome-wide measurements of signals
with pre-established networks (Ideker et al. 2002, Beisser
et al. 2010, Ma et al. 2011). These techniques often include a
score function quantifying the alternation of a given subnet-
work between different conditions as well as a search strategy
that aims to identify the subnetworks in the reference network
that have the highest scores. Different scoring functions have
imposed scores on network nodes or edges or both. Besides,
high-scoring nodes were prioritized as “disease genes” useful
for generating new hypothesis (Gu et al. 2010, Zheng and
Zhao 2012).

In the second category, algorithms typically start with a set
of genes as seeds to expand and extract a subnetwork from
the reference network. The resultant subnetworks, which re-
flect the paths in which the seeds are involved, suggest the
functional relationships of the seed genes and further predict
additional genes that may play important roles in functional
cooperation (Kleinberg and Tardos 2006).

This class of methods has two main components: a scoring
function quantifying the alternation of a given subnetwork
between different conditions, and a search algorithm to ex-
tract the highest scoring subnetworks. Different scoring func-
tions have imposed scores on network nodes or edges or both.
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Besides, high-scoring nodes were prioritized as “seed genes”
for searching (Gu et al. 2010, Zheng and Zhao 2012). Due to
the non-deterministic polynomial-time hard nature of the
problem of finding the maximal-scoring connected subgraph,
it can only be approached by heuristic or approximate meth-
ods. Most approaches rely on greedy searches, simulated
annealing, and genetic algorithms [see Mitra et al. (2013) and
Nguyen et al. (2019) for general surveys of the active module
identification methods]. Because of the diversity of scoring
functions and searching algorithms, it is impossible to obtain
identical or similar subnetworks given the same input expres-
sion profiles and protein–protein interaction (PPI) network.

The main contribution of this article is the development of
a self-contained tree-based structure learning algorithm devel-
oped into the framework of structural equation models
(SEM), called SEMtree() and included in the R package
SEMgraph (Grassi et al. 2022). To investigate the utility of
our approach, we performed two sets of experiments on both
observed and simulated expression data using Human Protein
Reference Database interaction network, including 5007 pro-
teins and 42 704 interactions from KEGG database (Kanehisa
and Goto 2000). We tested the ability of our framework to
evaluate plausible regulatory subnetworks of five popular
subnetwork detection methods, i.e. BioNet (Beisser et al.
2010), COSINE (Ma et al. 2011), pathfindeR (Ulgen et al.
2019), WalktrapGM (Petrochilos et al. 2013), and our fast
Steiner tree (ST) function to provide a meaningful comparison
in terms of performance.

Regarding real data analysis, the highest scoring subnet-
work from each method has been recovered as undirected net-
work and supplied to causal additive trees (CAT) (Jakobsen
et al. 2022) algorithm of SEMtree() to be converted in a di-
rected tree. The latter conversion allows to compare the meth-
ods in terms of directed active subnetworks.

The remainder of this article is organized as follows. First,
we describe the SEMtree() features both in terms of infer-
ence procedure and user interface. Then, we outline the exper-
imental setup constructed to evaluate subnetwork detection
methods, including the real data application and simulation
design. In the end, we provide the results together with the
overall discussion.

2 Method and implementation

SEMtree() function includes both graph and data-driven
algorithms to recover trees, T ¼ ðV;EÞ with p nodes (V) and
p� 1 edges (E). A tree is an undirected (or directed) graph
without cycles with a unique path between any two nodes,
where a path between two nodes ðj; kÞ 2 V can be viewed as a
sequence of edges that may have either the same or different
direction with respect to neighboring connections. The graph
method refers to the ST, a tree from an undirected graph that
connects “seed” (e.g. disease) with additional nodes in the
“most compact” way possible based on a very fast solution
provided by the Kou’s algorithm (Kou et al. 1981). The data-
driven methods propose fast and scalable procedures based
on the Chu–Liu–Edmonds’ (CLE) algorithm (Chow and Liu
1968) to recover a tree from a full graph. The first method,
called CAT (Jakobsen et al. 2022), uses pairwise mutual
weights as input for the CLE algorithm to recover a directed
tree (arborescence). The second one (Lou et al. 2021) applies
the CLE algorithm for skeleton recovery and extends the skel-
eton to a polytree represented by a completed partially

directed acyclic graph (CPDAG). Finally, applying the Prim’s
algorithm (Prim 1957), the minimum spanning tree (MST) of
a connected undirected graph (or a data-driven undirected
full graph) can be identified. Here, we review the novel CAT
method used for the conversion of undirected graphs in di-
rected ones.

2.1 Causal tree recovery

A fundamental problem is learning the causal structure of a
random vector Y ¼ ðY1;Y2; . . . ;YpÞ without the graph
knowledge. Generally, a directed acyclic graph (DAG), G ¼
ðV;EÞ is used to understand whether Yk causes Yj (or vice
versa), where V is the set of nodes (i.e. variables) and E is the
set of edges (i.e. connections), and loops are not allowed.
Causality is evaluated over directed paths between two nodes
having causal relevance, i.e. a sequence of edges with the
same direction, where node Yk is an ancestor of Yj, and Yj is a
descendant of Yk. If Yk and Yj have a direct link (Yk ! Yj),
Yk is the parent of the child Yj. A DAG can also be repre-
sented as an SEM, with no confounding unobserved variables,
as follows:

Yj ¼
X

k2paðjÞ
bjkYk þUj; for all j 2 V (1)

where Yj and Uj are an observed variable and an unobserved
error term, respectively; paðjÞ is the parent set of Yj and bjk is
the regression coefficient, i.e. the weight of the direct link
(Yk ! Yj). DAG models assume independent errors (no con-
founding), covðUj; UKÞ ¼ 0, and unequal error variances,
rj ¼ varðUjÞ with a Gaussian (normal) distribution, Uj �
Nð0; rjÞ for all j 2 V.

For high dimensional data, recently Jakobsen et al. (2022)
suggest models of reduced complexity (i.e. directed trees) as
causal graphs. Their approach is known as CAT. A directed
tree is a connected DAG in which all nodes have a unique par-
ent, except the root node (r) with none parent. The node r is
the unique node with a directed path to any other nodes in
the tree. In graph theory, a directed tree is also called an arbo-
rescence, a directed rooted tree, and a rooted out-tree, and is
a sub-class of polytree that allows multiple root nodes, and
nodes with multiple parents. CAT is also a SEM defined with
bivariate non-linear structural equations:

Yj ¼ fjðYpaðjÞÞ þUj; for all j 2 V (2)

where fjð:Þ is a non-linear function of any form between the
child Yj and the unique parent Yk ¼ YpaðjÞ, i.e. (Yk ! Yj), and
fjð:Þ ¼ Y3

k , or fjð:Þ ¼ sinðYkÞ, or fjð:Þ ¼ Yk þ Y2
k þ Y3

k , etc.
While, the additive Uj term is assumed with a Gaussian distri-
bution as in linear SEM.

Generally, the causal structure is not identifiable from the
observational data. Common “data-driven” structure learn-
ing methods (Heinze-Deml et al. 2018) use different assump-
tions to ensure identifiability of the causal DAG or a list of all
the equivalent DAGs (i.e. a Markov equivalence class) embed-
ded in a CPDAG. The authors (Jakobsen et al. 2022) prove
that exact identification, and not just an equivalent class, is
possible for systems of lesser complexity. CAT procedure con-
sistently recovers the causal directed tree of the non-linear
SEM in Equation (2).

The causal graph recovery problem (see Fig. 1) is resolved
finding a minimum edge weight directed spanning tree of the
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fully connected graph, G ¼ ðV;EÞ with p nodes V ¼ Y and
pðp� 1Þmutual edges E ¼ ðYk ! Yj; Yk  YjÞ.

CAT uses a score-based method to recover a directed tree,
T ¼ ðV;E�Þ minimizing a suitable score function, S over all
mutual edges of the full graph, that is proportional to the
Gaussian log-likelihood score function, defined by

S ¼ minT

X
ðk jÞ
ðk! jÞ

wG
jk ¼

X1

2
log

rr

sr

� �
(3)

where rr and sr are the error variance of Uj (or Uk) and the
variance of Yj (or Yk), respectively. The weight wG

jk represents
the error variance ratio and the lower the value, the better the
link prediction. It is simple to implement, computationally ef-
ficient, and only requires two steps. The mutual edge weights
of the directed full graph are estimated using the residual var-
iances of ðYj � fjðYkÞÞ and ðYk � fkðYjÞÞ from the (bivariate)
additive regression methods in the first phase. These weights
are then incorporated into the CLE algorithm to recover a di-
rected tree with minimal edge weight in the second phase. To
note, the non-linearity is essential to distinguish the links
ðk! jÞ and ðk jÞ. In linear regression with standardized
variables, the weights are equivalent to the negative mutual
information, �MI ¼ log½1� absðcorðYj; YkÞÞ�, a symmetric
measure that doesn’t preserve directionality information.

For the implementation, SEMtree() function performs: (i)
additive model fitting with penalized regression splines using
the R-function gam from the R-package mgcv, in order to ob-
tain estimates of f̂ j;k (resp. f̂ k;j) and r̂j ¼ varðYj � f̂ j;kÞ (resp.
r̂k ¼ varðYk � f̂ k;jÞ) in the weighting phase; (ii) the R-function
edmondsOptimumBranching() from the R-package
RBGL for the CLE algorithm in the recovery phase.

2.2 User interface

The example code of the function SEMtree() running CAT
is as follows:

SEMtree (graph ¼ NULL, data, seed,
type ¼ “CAT”, eweight ¼ NULL,
verbose ¼ FALSE , .)

The inputs are:

• a graph representing the network of interest as igraph ob-
ject or graph¼NULL, if a full graph is used;

• a gene expression data where rows correspond to subjects,
and columns to graph nodes (data);

• a vector of user-defined seed nodes (seed);
• the Tree-based structure learning method, where four

graph and data-driven algorithms are available (type ¼
“CAT”, or “CPDAG”, or “ST”, or “MST”);

• the edge weight type for igraph object where by default
the edge weights are internally computed using 1-abs(cor),
otherwise are determined from the user-defined distances
(eweight);

• the logical argument verbose, if TRUE allows the user to
visualize and fitting (through SEMrun() function) the tree.

The output is the recovered tree represented by an igraph
object. To read more about SEMtree() function, in terms of
description and usage, refer to https://rdrr.io/cran/SEMgraph/
man/SEMtree.html.

3 Experimental design

The workflow of the experimental design is displayed in
Supplementary Fig. S1, and we refer to Supplementary
Material for additional details.

3.1 Benchmark data

Coronavirus disease (COVID-19) RNA-seq expression data
from Carapito et al. (2022) (GEO accession: GSE172114)
have been used as benchmark data with 69 subjects � 14 000
genes. Subjects include patients in the intensive care unit with
acute respiratory distress syndrome (“critical group,” n¼ 46)
defined as cases, and those in a non-critical care ward under
supplemental oxygen (“non-critical group,” n¼23) defined
as controls. The empirical Bayes technique, as implemented in
the limma R package (Smyth 2005), was used to fit linear
models on the normalized RNA-seq data across the 46 case
and 23 control samples. The gene P-values were adjusted for
multiple testing using the method of Benjamini–Hochberg

Figure 1. CAT procedure: (a) the fully connected graph with mutual edges and (b) the directed tree (an arborescence) minimizing edge weights with

CLE’s algorithm, where the edge weights represents the error variance ratio and the lower the value, the better the link prediction.
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(BH) (Benjamini and Hochberg 1995). Those P-values can be
directly used as the input for subnetwork detection, be ranked
to select a seed gene set, or be converted into a set of particu-
lar weights tailored to the requirement of the model.

Network information has been retrieved from the KEGG
interactome object of the SEMgraph package as an igraph
network object of 5007 nodes and 44 755 edges correspond-
ing to the union of 225 KEGG pathways extracted using the
ROntoTools R package (Ansari et al. 2017). The latter inter-
actome has been transformed into an undirected network to
be suitable for fitting the already existing subnetwork detec-
tion methods. For efficiency purposes, the network has been
filtered according to the genes included in the benchmark
data and the largest component has been retained. This proce-
dure results in a reference network of 3033 nodes and 19 735
undirected edges.

3.2 Tree (CAT) extraction

The existing subnetwork detection methods (see Table 1 and
Supplementary Section S1 for more details) differ for the class
of the output in which the recovered active module is repre-
sented. Three out of five algorithms, i.e. COSINE,
pathfindeR, and WalktrapGM, give as output a list of genes
representing the identified subnetworks, not allowing the user
to visualize the full graph with the interactions between
nodes. On the other side, BioNet and SEMtree() output the
subnetwork in an undirected graph format. Therefore, we ex-
tract from the obtained gene list of COSINE, pathfindeR, and
WalktrapGM the undirected induced subgraphs on the refer-
ence undirected KEGG interactome.

Since in Section 3.3 a directed graph structure is required in
the benchmark data analysis to evaluate the node perturba-
tion through SEM fitting, the different type of output has
been converted to a directed graph (a directed tree) by the fol-
lowing two steps procedure:

1) First, when all the undirected graphs representing the
identified active modules have been recovered, their di-
mensionality has been investigated to have a maximum
number of about 200 nodes as the upper bound to retain
the interpretability of the recovered modules as suggested
by Petrochilos et al. (2013), and similar to the size (232)
of the KEGG “Coronavirus disease—COVID-19”
pathway. Beyond this threshold, to solve this

high-dimensionality problem, SEMgraph offers the pos-
sibility to merge groups of nodes using hierarchical clus-
tering with prototypes from the protoclust R package
(Minmax linkage) (Bien and Tibshirani 2011) with
mergeNodes() function. We therefore have a single
representative data point (the prototype) for the resulting
cluster for each merging of the agglomerative procedure.
The mergeNodes() function cuts the dendrogram at
height h ¼ 1� absðq0), where q0 is the Pearson’s corre-
lation coefficient, cor(Yj; Yk). This procedure results in a
merged node (and a reduced graph) in which every node
in the cluster has correlation of at least q0 with the proto-
type node. We tuned the height h to control the size of
subnetworks to be approximately 200 genes.

2) Second, after merging nodes, an arborescence layout
with CAT algorithm has been recovered from each
method to (i) be more comparable from a structural
viewpoint with a more interpretable yet visible subnet-
work, (ii) to identify gene signature, i.e. significant root
node, driver-gene and hub or module structure, and (iii)
to reduce considerably the CPU time computation of
SEM fitting.

We refer the reader to Supplementary Figs S4–S12 for the
visualization of the recovered CAT subnetwork of each
method.

3.3 Evaluation metrics

In the benchmark data analysis, the performance of the state-
of-the-art approaches has been evaluated in terms of (i) sys-
tem perturbation, (ii) disease classifier performance, and (iii)
COVID-19 gene set/GO enrichment. We also add to the seven
extracted CAT modules two reference trees (after CAT con-
version): (8) the KEGG “Coronavirus disease—COVID-19”
pathway, and (9) the data-driven directed tree extracted from
the top 200 DEGs ranking by a Random Forest variable im-
portance procedure with the randomForest() function of
randomForest R package (Breiman 2001).

1) Evaluation of system perturbation of extracted CAT sub-
networks has been evaluated via SEMace() and
SEMgsa() functions of the SEMgraph (Grassi et al.
2022, Grassi and Tarantino 2022). For method compari-
son, we report (i) the number of significant source–sink

Table 1. We selected four methods from literature for comprehensive assessment of subnetwork detection if: (i) the method is implemented within a

well-maintained R package (or open source R code) and (ii) it represents diversity of methodology.a

Method (ref) Algorithm Input network Input data Node scoring Edge scoring

BioNet (Beisser et al. 2010) Integer-linear programming HPRD P-values P-values
COSINE (Ma et al. 2011) Genetic algorithm HPRD Gene expression data F-test ECF test
pathfindeR (Ulgen et al.

2019)
Greedy algorithm HPRD P-values P-values

SEMtree (Grassi et al.
2022)

Fast ST algorithm (1) HPRD Seed Seed 1-abs(cor)

Fast ST algorithm (2) HPRD Seed Seed r-to-z P-values
WalktrapGM (Petrochilos

et al. 2013)
Random walk algorithm (1) HPRD FC values FC values FC values

Random walk algorithm (2) HPRD Gene expression data P-values r-to-z P-values

a The table summarizes the selected method, highlighting the key characteristics and the key differences between each method in terms of (i) algorithm used
to construct the subnetworks, (ii) input requirements, (iii) node scoring, (iv) edge scoring (if any), and (v) statistical test for assessing the significance of the
identified active subnetworks (if any). We selected the ST proposed as default option from SEMtree() function, where edge weights are defined according to
1-abs(cor), and the best performing weights among weightGraph() options, defined by r-to-z P-values (see Supplementary Section S2 for details on graph
weighting procedures and Supplementary Tables S3–S7 for more information about the ST methods’ performance).
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paths (P < 0:05 after BH correction) over the total esti-
mated paths; (ii) the Bonferroni combination of ACEs’
P-values (P ¼ K �minðp1;p2; . . . ; pKÞ), where K is the to-
tal estimated paths, the lower the value, the better the
score; (iii) the number of DEGs, i.e. differential expres-
sion genes with P-values < 0:05 after BH correction,
and (iv) the node activation and node inhibition P-values
(Pþ and P�, respectively) through a Bonferroni statistics
(P ¼ 2 �minðPþ; P�Þ).

2) Disease classifier performance was carried out by a pe-
nalized Fisher’s discriminant analysis (pFDA) with the
PenalizedLDA() function of PenalizedLDA R pack-
age (Witten and Tibshirani 2011) to identify genes in the
extracted subnetworks able to discriminate between
groups. We highlight (i) sensitivity; (ii) specificity, and
(iii) accuracy of the FDA classifier.

3) We perform an assessment of enrichment performance,
both on the benchmark and simulated data, looking at
precision, recall, and F1-score. To this goal, the genes (or
the GO terms) are separated into two groups: fore-
ground genes (FG) (or foreground GO terms, FGO) and
background genes (BG) (or background GO terms). The
FG (FGO) are the reference 92 COVID-19 genes (1099
GO terms), while, for the simulated data, FG genes are
artificially differentially expressed. Then, (i) precision,
(ii) recall, and (iii) F1-score have been computed (taking
the average over 100 simulation runs for the simulated
data).

We refer the reader to Supplementary Fig. S1 for the visual-
ization of the active-subnetwork search approach and to
Supplementary Section S3 for more details about the evalua-
tion metrics.

3.4 Data simulations

Following the experimental setup of Ma et al. (2011), we sim-
ulated five datasets, including one “white” dataset (i.e. con-
trol) and four datasets to be compared to the control one (i.e.
cases) from multivariate normal distributions. Different mean
parameters (l) and covariance matrices (with different q cor-
relation coefficient) were set for each dataset, fixing the var-
iances to 1. Each dataset consists of 500 genes and 20
samples and the condition-specific subnetwork for case data-
sets 1, 2, 3 consisted of 50 genes, while for the case dataset 4
consisted of 40 genes. More details are given in
Supplementary Section S3.

Given the PPI network recovered from KEGG database and
the ground truth subnetwork, four gene expression data
(against one control dataset) were simulated with 100 ran-
domizations. Then we performed differential expression
analysis across the 20 case and 20 control samples and we
assigned to each gene an adjusted P-value representing its sig-
nificance of differential expression. Gene expression data,
DEGs or P-values were supplied according to the subnetwork
detection method of interest. We ran 6 selected subnetwork
methods 100 times for 4 case datasets. Finally, we obtained
2400 (100 randomizations � 4 case datasets � 6 methods)
subnetworks. Note that, for each simulation run, the evalua-
tion metrics (average Recall, Precision, and F1-score over 100
runs) have been computed only if an active module with more
than one node has been identified.

4 Results
4.1 Benchmark results

We aim to apply SEMtree() on COVID-19 real data to
compare its performance with existing methods and to reveal
significant biological processes. The goal is to retrieve a single
condition-specific subnetwork composed of genes with a
good system perturbation, while reporting optimal ability to
discriminate between groups. In addition, the ability of each
method to identify COVID-19-related genes (gene enrich-
ment) and GO terms related to those genes (GO enrichment)
has been tested.

Table 2 shows that the highest percentage of source–sink
path perturbation and the lowest combination of path P-val-
ues (ACEs(%) and PVAL(E), respectively) is reported by ST,
in line with RF_C19 and immediately followed by STr2z.
pathfindeR reports the most perturbed network, with 112
DEGs (No.DEGS) and the lowest combination of node P-val-
ues (PVAL(V)), followed by BioNet, ST, and STr2z. The com-
bination of all these metrics allows to consistently identify ST
as the most perturbed subnetworks among the considered
ones in terms of both path and node perturbation.

In addition, Table 3 shows that most of the methods report
high accuracy values (above 90%) in classifying patients as
case or non-case, with the exception of COSINE and
WGM_FC that report accuracy below 90% but still around
80%. However, according to the higher number of zero fea-
tures (no.zero), the most parsimonious predictors (genes) are
in STr2z, WGM_RW, WGM_FC, and ST. BioNet reports
high classification metrics but almost all the features have
non-zero discriminant vector. To note, the reference modules
have the poorer (KEGG_C19) and the greater (RF_C19) clas-
sification performance.

Gene and GO precision, recall, and F1-score are also shown
in Table 3. ST methods show the best performance in identify-
ing COVID-19-related genes, with the highest gene F1-score
(0.12 for STr2z and 0.11 for ST) among all the considered
methods. The latter methods are able to identify, respectively,
18 and 15 reference genes (see Supplementary Table S1) over
the total of 92. ST gene enrichment metrics are in line with
KEGG_C19 baseline that reports a gene F1-score equal to
0.23. On the other side, pathfindeR reports the highest GO
F1-score equal to 0.50, immediately followed by ST, STr2z,
and WGM_RW (0.44). pathfindeR is able to recover 703 ref-
erence GO terms over the total of 1099, while STr2z and ST
select, respectively, 650 and 535 COVID-19 GO terms.
Worst performance, both on gene and GO metrics, is reported
by COSINE, with a gene F1-score of 0.05 (with a number of
selected COVID-19 genes equal to 8) and a GO F1-score of
0.25 (with a number of selected COVID-19 GO terms equal
to 184).

In the end, to better explore the similarity between the
seven recovered subnetworks, Jaccard similarity indices
(JðA;BÞ ¼ jA \ Bj=jA [ Bj, where A \ Bj is the intersection of
sets A and B and jA [ Bj is the union) have been reported in
Supplementary Table S2, excluding ST and WGM_FC for the
obvious similarity with STr2z and WGM_RWR. Similarity
coefficient around 0.3 is observed by pathfindeR with BioNet,
and STr2z, while the other methods seem to have recovered
different network structures.

Overall, SEMtree() Kou’s ST algorithm is able to retrieve
the subnetwork of interest, with good enrichment metrics, if
compared to the other methods. The module retrieved by ST
together with its perturbation is reported in Fig. 2. For tree
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interpretation, the SEMtree() recovered subnetwork can be
investigated to identify significant causal paths and hub-genes
with high level of graph arborescence, i.e. many edges point
away from that specific node. After testing for significant
ACEs (P < 0:05 after Bonferroni correction, see
Supplementary Table S8), a significant path consisting of 14
nodes (with only two genes not perturbed) and 13 edges (with
high pairwise correlation) between source node ATG16L1
(Gene ID: 55054) and sink node CCR5 (Gene ID: 1234) has
been found and compared with COVID-19 literature in the
legend of Fig. 2. This perturbed route, along with others, be-
tween the virus and the host cell interaction could suggest a
possible mechanism of viral pathogenesis.

In summary, trees (arborescences) are simple models, but
can nevertheless provide useful biological insights and extract
unrevealed knowledge-based network structures to experi-
mentally validate new hypothesis for disease (here, COVID-
19) research.

4.2 Simulation results

To test the seven subnetwork detection methods on the simu-
lated data, each of the four case datasets was compared with
the Control Group to identify condition-specific subnetworks.
The goal is to retrieve a single condition-specific subnetwork
composed of 50 genes, while for the case dataset 4 consisted
of 40 genes. Simulation results are shown in Supplementary
Fig. S14.

Compared with the other methods, SEMtree() ST and
STr2z achieve high precision, around 90%� 80% for all the
case datasets, just below the precision of BioNet. Since BioNet
recovers the smallest subnetwork for all the case datasets (see
Supplementary Fig. S13), its precision is the highest one com-
pared to the other methods. SEMtree() recovers the smaller
subnetworks immediately after BioNet and, therefore, it
shares similar precision metrics with the latter. The highest
network dimension is reported by WGM_RWR and WG_FC,
resulting in the lower precision scores since the method se-
lected more BG (i.e. false positives). Similar performance is
reported by pathfindeR.

Looking at the recall metrics (Supplementary Fig. S14),
COSINE reports slightly higher results given that the higher
dimensionality of its modules allows to select more genes and
obtain a smaller number of false negatives. The recall values
of ST and STr2z are in line with BioNet and higher than
pathfindeR, WGM_RWR, and WGM_FC.

Then, we calculated the F1-score to determine how good
the methods are to retrieve the FG while avoiding picking BG.
The F1-score for COSINE is around to 60% for all case data-
sets, while it is near 30%� 40% for ST, STr2z, and BioNet.
The latter methods are able to reach the highest F1-scores for
case dataset 1 and 3, driven by the high precision values. In
detail, STr2z reports F1-score around 60% for case dataset 1
and 3. For more details about simulation metrics, we refer the
reader to Supplementary Table S9.

Table 2. Evaluation metrics (graph filtering and system perturbation) from the benchmark data analysis.a

System perturbation

Method Graph h Tree ACEs (%) PVAL(E) No. DEGs PVAL(V)

BioNet (263; 569) 0.1 (193; 192) 19 2.70e-04 112 2.15e-08
COSINE (241; 171) 0.2 (206; 205) 2 3.44e-02 57 8.71e-09
pathfindeR (264; 700) 0.1 (205; 204) 0 2.86e-01 112 2.78e-11
ST (396; 395) 0.15 (192; 191) 63 5.41e-06 103 4.91e-10
STr2z (459; 458) 0.2 (204; 203) 22 1.55e-05 94 3.17e-13
WGM_RWR (166; 600) 0 (166; 165) 0 4.17e-01 66 3.75e-10
WGM_FC (155; 560) 0 (155; 154) 4 9.64e-02 49 4.77e-08
KEGG_C19 (183; 113) 0 (183; 182) 0 3.17e-01 48 1.64e-10
RF_C19 (200; 199) 0 (200; 199) 43 6.58e-03 141 2.09e-12

a The original graph size (graph), the optimal height (h) to cut the minimax clustering, and the direct tree (arborescence) structure (tree) have been firstly
displayed. Then, the path perturbation of each method can be evaluated looking at the percentage of significant paths in the network together with the
combination of their P-values (ACEs ð%Þ and PVALðEÞ, respectively). Node perturbation can be measured with the number of DEGs (No.DEGS) in the
network and the combination of node activation and inhibition P-values (PVALðVÞ).

Table 3. Evaluation metrics (disease classifier performance and gene/GO enrichment) from the benchmark data analysis.a

Disease classifier performance Gene/GO enrichment

Method No. genes No. zeros Se Sp Acc GenePre GeneRec GeneF1 GOPre GORec GOF1

BioNet 193 2 0.96 0.87 0.93 0.07 0.14 0.09 0.51 0.4 0.45
COSINE 206 20 0.89 0.87 0.88 0.04 0.09 0.05 0.47 0.17 0.25
pathfindeR 205 42 0.96 0.87 0.93 0.07 0.16 0.1 0.41 0.64 0.50
ST 192 46 0.96 0.87 0.93 0.08 0.16 0.11 0.41 0.49 0.44
STr2z 204 87 0.96 0.87 0.93 0.09 0.2 0.12 0.35 0.59 0.44
WGM_RW 166 59 0.93 0.83 0.90 0.07 0.13 0.09 0.50 0.39 0.44
WGM_FC 155 47 0.91 0.83 0.88 0.03 0.05 0.04 0.53 0.36 0.43
KEGG_C19 183 80 0.80 0.78 0.80 0.17 0.34 0.23 0.62 0.46 0.53
RF_C19 200 0 0.96 0.91 0.94 0.03 0.05 0.03 0 0 NA

a The ability of each method to discriminate between groups has been tested via pFDA and it has been evaluated in terms of number of zero features
(no.zeros, with zero penalized discriminant vector) in relation to the number of recovered genes (no.genes) and the classical classification metrics (Sensitivity
Se, Specificity Sp, Accuracy Acc). In addition, gene and GO precision, recall and F1-score are also reported (GenePre, GeneRec, GeneF1, GOPre, GORec,
GOF1).
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5 Discussion

The key challenge in many disciplines is to derive networks
from high-dimensional data, and numerous methods have
been proposed. Despite being too simple for accurate repre-
sentations of complex biological processes, trees (undirected
and directed) can be used as the starting point to provide a
general comprehension of the dependence structure of the net-
work. Directed trees is an obvious choice for causal inference
in high-dimensional data. Moreover, we can consider certain
attributes of the chosen tree to be substitutes for related
attributes of the real, underlying network. Connectivity, path
length, and degree are a few attributes that can be employed

in this way. All of these factors led us to design SEMtree(),
a tree-based structure learning algorithm based on SEM. The
ST approach has been chosen to be compared to the other
existing methods, representative of the main algorithms dedi-
cated to the identification of active modules: PCST (BioNet),
genetic algorithm (COSINE), greedy algorithm (pathfindeR),
and random walk (WalktrapGM). We have performed a com-
prehensive assessment of those subnetwork detection methods
using COVID-19 real data and simulation data. The key con-
clusion in this study can be summarized as follows.

First, based on the real ans sumulation datasets, each of the
approaches was asserted to be efficient in their original

Figure 2. The graph shows 61 differentially activated nodes and 52 differentially inhibited nodes, showing significant variation in the two COVID-19

groups. The remaining 80 (white-shaded) nodes are not differentially regulated. The width of edges shows the strength of correlation coefficient of pairs

of interacting nodes. The path between source node ATG16L1 (Gene ID: 55054) and sink node CCR5 (Gene ID: 1234) can be highlighted as a significant

perturbation route in the disease of interest. The node ATG16L (down-regulated) gene produces a key autophagy protein that interacts with ATG5 and

ATG12 to form a complex necessary for the extension of the autophagophore. Through influencing multiple components of the immune response,

autophagy plays a crucial antiviral function in a variety of human illnesses (Ahmad et al. 2018; Tao et al. 2020). However, some viruses, including SARS-

CoV-2, have learned how to manipulate the autophagy machinery in order to avoid their destructive destiny. On the other side, CCR5 (down-regulated) is a

receptor for proinflammatory chemokines, which are implicated in host responses, particularly to viruses. Findings of �Cizmarevi�c et al. (2021) imply that

the CCR5-32 allele may be protective against SARS-CoV-2 infection and HIV infection alike and represent a predictive biomarker for COVID-19

susceptibility, severity, and death. The activity of three hub structures along the path MAPK14! GNAI3! RHTO1 are altered. According to recent

research reports, MAPK14 (up-regulated) stimulates regulation of inflammation that may contribute to exacerbate organ damage linked with

complications of COVID-19 (Su et al. 2021), GNAI3 (down-regulated) is a gene target predicting COVID-19—hypertension comorbidity pathway crosstalk

(Barh et al. 2021), and RHTO1 (up-regulated) maps a hub protein sharing interactions with both viral baits and host baits for antiviral drug discovery (Liu

et al. 2021).
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articles. Our results on benchmark data show high system
perturbation for the ST of SEMtree(), while high levels of
GO enrichment are reported by pathfindeR. Simulation
results report high precision value for BioNet and ST, but a
good F1-score around 60% for COSINE. However, worst
performance on the benchmark data is reported by COSINE.
As none of the methods outperformed other methods overall,
users should choose an appropriate method based on the pur-
poses of their studies.

Second, in terms of ease of use, some of the methods do not
offer user-friendly interface or visualization functions for the
identified subnetworks. Most of the existing subnetwork de-
tection methods output a list of genes representing the mod-
ule, not allowing the user to visualize the entire network.
BioNet outputs the subnetwork in an undirected graph
format.

We propose SEMtree() algorithm in order to overcome
some limitations of existing literature. The advantages of our
algorithm are summarized as follows:

1) SEMtree() function includes four tree-based structure
learning methods implemented with graph and data-
driven algorithms. Fast Kou’s algorithm has been chosen
for comparison with the other existing methods based on
the pre-established networks (interactomes), with default
edge weighting, but the users can choose one of the
methods of weightGraph() function based on their
needs (see Supplementary Section S2).

2) SEMtree() utility goes beyond subnetwork detection
with the graph extraction functionality. Starting from a
seed list, SEMtree() allows the user to recover the
structure of the network with data-driven algorithms. In
detail, the CAT (arborescence) or the CPDAG (polytree)
can be recovered from a user-defined gene list or a list of
differentially regulated genes, active modules, or
pathways.

In addition, SEMgraph package provides a set of utilities
that have been crucial to build up the analysis of the article.
These functions allow the user to: cluster the graph
(mergeNodes()); apply SEM-based gene set analysis to re-
cover the perturbation metrics (SEMgsa()), evaluate ACEs
between source–sink pairs (SEMace()), evaluate SEM fitting
given the recovered network and the data of interest
(SEMrun()), and visualize the identified module with
gplot() function, specifying different type of layouts, and
other functions illustrated in Grassi et al. (2022). As, to our
knowledge, no existing method is able to fully leverage the
network and data information as SEMtree(), allowing the
user to easily recover the tree-based structure with different
algorithms, extract a directed graph from a seed list and visu-
alize the recovered module.

Given the advance in tree development, our direction for fu-
ture work is also to consider the most recent proposals sug-
gested in finance literature (Ahelegbey et al. 2019, Agosto
et al. 2020, Giudici and Polinesi 2021), and in machine learn-
ing (Chatterjee and Vidyasagar 2022, Tramontano et al.
2022). Specifically, the random matrix theory (Giudici and
Polinesi 2021), and the new xi-coefficient of correlation
(Chatterjee and Vidyasagar 2022) could be incorporated in
SEMtree() as first-step filtering technique for ST and MST,
and as asymmetrical edge scoring in high-dimensional
(n < p) regime for CAT, respectively.

6 Conclusions

We have shown that SEMtree() is easily accessible to com-
mon users and provides robust results under several experi-
mental conditions. It recovers the tree-based structure starting
from the interactome and gene expression information while
offering good enrichment metrics, perturbation extraction,
and classifier performance.

Even though trees are overly simplistic representations of
biological systems, we believe that SEMtree() can be a valu-
able tool for practitioners, not only when undertaking com-
plex subnetwork detection analysis, but also when extracting
dependence (causal) structure with a direct tree (arborescence)
starting from a list of genes. This simple graph can be useful
as a preliminary step for visualizing observational high-
dimensional data, highlighting densely connected hub nodes
or neighborhoods that might be further investigated.

Availability of source code and requirements

Project name: SEMtree()(SEMgraph package)
Project home page: https://github.com/fernandoPalluzzi/
SEMgraph
Operating system(s): Platform independent
Programming language: R
License: GNU General Public License version 3 or higher
(GPL � 3)
Restrictions for non-academic use: None

Supplementary data

Supplementary data is available at Bioinformatics online.
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