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Abstract
The COVID-19 pandemic has highlighted the importance of reliable statistical
models which, based on the available data, can provide accurate forecasts and
impact analysis of alternative policy measures. Here we propose Bayesian time-
dependent Poisson autoregressive models that include time-varying coefficients
to estimate the effect of policy covariates on disease counts. Themodel is applied
to the observed series of new positive cases in Italy and in the United States.
The results suggest that our proposed models are capable of capturing nonlinear
growth of disease counts. We also find that policy measures and, in particular,
closure policies and the distribution of vaccines, lead to a significant reduction
in disease counts in both countries.
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1 INTRODUCTION

Time series of observed counts arise in a variety of contexts in which a number of events are recorded over time, includ-
ing studies of incidences of a particular disease (Davis, 2003; Zeger, 1988). The reported occurrences are often expressed
with daily, weekly, or monthly frequency. Disease modeling has significant practical importance for governments since it
provides information that can improve decisionmaking. In addition, studying the correlation between counts and policy
variables allows to better gauge the impact of control measures. This paper provides a Bayesian analysis of a time series
of counts with the goal of providing reliable short-term predictions of disease counts and to assess their correlation with
explanatory variables. The time series of interest is the incidence of COVID-19 infectious disease in Italy andUnites States,
two paradigmatic countries, and the explanatory variables are the varying Non-pharmaceutical interventions (NPIs)
implemented by most countries to stop the virus propagation.
Since COVID-19 first emerged in early 2020, it has infected nearly every country and claimed the lives of several thou-

sands of people worldwide. So far, many countries have been locked-down and stringent social distancing measures have
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been implemented to contrast the high incidence of the infection over time and its high economic consequences. Previous
studies, mostly focused on the first wave of the pandemic (before July 2020), have shown the effectiveness of NPIs in pan-
demic mitigation (Cowling et al., 2020; Hao et al., 2020). They have also shown that the impact of NPIs may differ among
countries with various country characteristics, like health capacity, population density, air temperature, etc. (Esteve et al.,
2020; Marcon et al., 2020). Existing studies also indicate that vaccination is the most promising strategy for overcoming
the epidemic. However, the unequal distribution and allocation of vaccines among nations and demographic groups may
obstruct the path to herd immunity. It is crucial to understand how vaccination combined with NPIs reduces COVID-19
transmission (Giordano et al., 2021).
The Poisson AutoRegressive (PAR) model is one of the most commonly used models for analyzing disease time series

data, as it can well capture time dependence among observations. It can be seen as a special case of the generalized
linear model (GLM) methodology (Fahrmeir et al., 2013; Kedem & Fokianos, 2002; Nelder & Wedderburn, 1972) where
the link function is a linear function of the covariates, with coefficients that do not change over time. The advantage of
this specification is the ease of model implementation and interpretation. However, when the impact of the epidemic
changes over time, especially under the effect of policy measures, this type of model may be restrictive, and time-varying
coefficients may be needed.
A flexible way to introduce time-varying parameters in a GLMmodel is through spline basis functions, as in the seminal

work of Cleveland and Loader (1996). Spline basis functions have also been proposed to specify time-varying coefficients
in AutoRegressive (AR) time series models (Amorim et al., 2008; Cai et al., 1999; Huang & Shen, 2004). For this type of
models, Zeger (1988) has suggested a generalized estimating equation methodology, which still is the most commonly
used estimation method. Within the Bayesian framework, Chan and Ledolter (1995) proposed a Monte Carlo expectation
maximization (MCEM) technique.More recently,Hastie et al. (2001) compared different estimation procedures.Moving to
the more complex autoregressive moving average (ARMA)models, the only work that considers time-varying parameters
is that of Andrade et al. (2015).
None of these papers focuses on the time-varying character of the coefficients. We contribute to fill the gap with a

model that extends Fokianos et al. (2008) within a time-varying coefficient framework. In doing so, we extend the time-
dependent contagion models recently proposed by Agosto et al. (2021), Geir et al. (2022), and Roy and Karmakar (2021)
with the inclusion of time-varying policy covariates. And we also extend the causal contagion models recently proposed
by Bo et al. (2021) and Islam et al. (2020) with the inclusion of time-varying covariate effects, which also allows to compare
alternative time lags of policymeasures. Note also that our proposedmodel allows to account for overdispersion of counts,
as in the Markov-switching Poisson GARCHmodel proposed by Roberts et al. (1998).
More specifically, We consider two classes of time series generalized linear models. The first is a class of AR models,

in which the conditional mean of the Poisson process is linked to the past observations and to the potential covariate
effects. The second one adds the dependence of the past values on the conditional mean. Since the mean of a Poisson
model is the same as the variance, the latter can be seen as an Integer-Valued Generalized Autoregressive Conditional
Heteroskedasticity (INGARCH)model. Originally introduced by Ferland et al. (2006), thesemodels have been thoroughly
analyzed in Zhu (2012a, 2012b, 2012c) and Roberts et al. (1998).
We thus compare alternative models along three dimensions: AR versus INGARCH structures; time-constant versus

time-varying coefficient, and models with or without covariates while testing for different time lags.
The rest of the paper is organized as follows. Section 2 describes the proposed models, Section 3 describes the Bayesian

specification and inference. Section 4 describes the data. Section 5 presents the main empirical findings. Section 6
summarizes the highlights of the paper and suggests future research directions.

2 MODEL SPECIFICATION

The time dependence of COVID-19 transmission represents a critical factor to understand the epidemic dynamics. The
reference Susceptible-infected-recovery (SIR) model assumes an exponential growth model, which assumes that the log-
arithm of the counts follows a linear trend, summarized by 𝑅0, a function of the ratio between the new cases originating
on consecutive days. However, the evolution of the epidemics is characterized by time heterogeneity, which leads to a
nonlinear growth. This derives, for example, from time-varying testing and measurement procedures, among others.
From the previous consideration, it appears that the exponential growth assumption needs to be relaxed in favor of

a time-dependent modeling framework. Recently, Agosto et al. (2021) proposed a PAR model for epidemic counts that
can take into account both short-term and long-term dependence on past contagion shocks. The model is specified by a
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Poisson conditional distribution for the COVID-19 counts, along with a logarithmic link function which allows to model
the effect of covariates without constraining them to assume positive values, as in a linear link model.
While the model has been quite useful to monitor contagion in the first wave of the pandemic, it has become less

performing during the following times since, even if there is a nonlinear growth assumption, it is based on coefficients
that do not change over time and, therefore, cannot easily adapt to regime switches.
In this paper, we aim to extend the fixed coefficients PAR model of Agosto et al. (2021) into a time-varying coefficient

framework, more flexible in model specification. Our modeling strategy is motivated to adapt to the rapid changes of the
COVID spread. Hence, we propose a nonstationary time-varyingmodel, which is suitable for our analysis. The constraints
of the parameter space in Equations (7) and (18) aremotivated by the stationary conditions for the time-constant case. This
is fairly common in the time-varying AR and INGARCHmodel literature (Dahlhaus & Rao, 2006; Davis &Mikosch, 2009;
Fryzlewicz et al., 2008; Ferreira et al., 2017; Rohan & Ramanathan, 2013).
In detail, we consider two alternative specifications: one based on INGARCHmodels for counts, equivalent to the PAR

models and other one based on the more parsimonious AR models.

2.1 ARmodels

The time series of counts 𝑌𝑡 reported at time (day) 𝑡 is assumed to follow a Poisson distribution, conditional on the
information up to 𝑡 − 1:

𝑌𝑡|𝑡−1 ∼ Poisson(𝜆𝑡), (1)

where 𝑡−1 is the 𝜎-field that contains all relevant information up to time 𝑡. Let 𝑋𝑡 = (𝑋𝑡,1, … , 𝑋𝑡,𝑟) be a time-varying 𝑟-
dimensional covariate vector and let 𝑣𝑡 = log(𝜆𝑡). A Poisson autoregressive model can then be specified, following Agosto
et al. (2021), by the following link function:

𝑣𝑡 = 𝜇 +

𝑝∑
𝑖=1

𝛼𝑖 log(1 + 𝑌𝑡−𝑖) + 𝜂𝑇𝑋𝑡, (2)

where 𝜇 ∈ ℝ, 𝛼𝑖 ∈ ℝ with 𝑖 = 1, …𝑝, and 𝜂𝑇 = (𝜂1, … , 𝜂𝑟) ∈ ℝ𝑟 are unknown parameters to be estimated from the data.
From an interpretational viewpoint, 𝜇 is the intercept, 𝛼𝑖 describes the dependence of the expected count of cases on past
observations and 𝜂𝑇 describes a dependence of the expected counts on 𝑟 explanatory covariates at time point 𝑡.
The above model, as discussed in Agosto et al. (2021), allows to take into account time dependency of COVID-19 counts,

thereby reducing overdispersion. However, it remains the issue of a strong time heterogeneity of the policymeasures taken
by different countries, which can lead to an incorrect measurement of the effects of the covariates. To solve this issue, we
propose to extend the AR model into a time-varying coefficient version, in which the link function for 𝑌𝑡 becomes:

𝑣𝑡 = 𝜇(𝑡∕𝑇) +

𝑝∑
𝑖=1

𝛼𝑖(𝑡∕𝑇) log(1 + 𝑌𝑡−𝑖) + 𝜂𝑇(𝑡∕𝑇)𝑋𝑡, (3)

where 𝛼𝑖(𝑡∕𝑇) and 𝜂𝑇(𝑡∕𝑇) represent, for 𝑡 = 1, … , 𝑇, time-varying splines. We recall that a spline is a continuous function
that coincides with a polynomial on every subinterval in which it is defined. The coefficients of the polynomial differ from
interval to interval, but the order of the polynomial is the same. We consider, for parsimony, cubic B-splines.
The introduction of splines allows the effect of covariates to vary along different time intervals, trying to better capture

the effect of time-varying policy measures.

2.2 INGARCHmodels

The PAR model of Agosto et al. (2021) is an INGARCH model which allows to specify the logarithmic link not only as a
function of the past observations but also as a function of the past conditional mean of the process.
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More formally, the INGARCHmodel can be specified as follows:

𝑌𝑡|𝑡−1 ∼ Poisson(𝜆𝑡), (4)

𝑣𝑡 = log(𝜆𝑡) = 𝜇 +

𝑝∑
𝑖=1

𝛼𝑖 log(1 + 𝑌𝑡−𝑖) +

𝑞∑
𝑗=1

𝛽𝑗𝑣𝑡−𝑗 + 𝜂𝑇𝑋𝑡, (5)

where the additional parameter 𝛽𝑗 ∈ ℝ, 𝑗 = 1,… , 𝑞 represents the dependence of the logarithmic link on the conditional
mean of the Poisson process.
As done for AR models, we propose to consider a time-varying extension of INGARCH models, described by the

following:

𝑣𝑡 = 𝜇(𝑡∕𝑇) +

𝑝∑
𝑖=1

𝛼𝑖(𝑡∕𝑇) log(1 + 𝑌𝑡−𝑖) +

𝑞∑
𝑗=1

𝛽𝑗(𝑡∕𝑇)𝑣𝑡−𝑗 + 𝜂𝑇(𝑡∕𝑇)𝑋𝑡, (6)

where, in addition to the parameters in Equation (3), 𝛽𝑗(𝑡∕𝑇) represents, for 𝑡 = 1, … , 𝑇, time-varying parameters specified
as functions of cubic B-splines.

3 BAYESIAN INFERENCE

To better take model uncertainty into account, we consider a Bayesian specification for both AR (Section 3.1) and
INGARCHmodels (Section 3.2). We specify the priors according to the parameter constraints in the time-constant frame-
work, putting some transformations on parameters to improve sampling efficiency. At the end, the posterior distribution
is specified.
Equations refer to the time-varying framework. However, for the time-constant case, they can be easily recovered.

3.1 tvBARmodels

Let 𝜃 = (𝜇, 𝛼𝑖 , 𝜂𝑘) indicate the vector of parameters of the AR model. Their parameter space is given by

Θ = {𝜃 ∈ ℝ𝑝+𝑟+1 ∶ |𝛼1(𝑥)|, … , |||𝛼𝑝(𝑥)||| ≤ 1, sup
𝑥

|||||
∑
𝑘

𝛼𝑘(𝑥)
||||| ≤ 1}. (7)

The constraints introduced in Equation (7) on 𝛼𝑖(𝑥)s are motivated by the time constant models where these conditions
lead to stationarity and ergodicity. In the time-varying AR literature, they are not uncommon (Dahlhaus & Rao, 2006;
Fryzlewicz et al., 2008).
The prior distributions for the time-varying BayesianAutoRegressive (tvBAR)models can be specified, for each B-spline

basis expansion as follows:

𝜇(𝑥) =

𝐾1∑
𝑠=1

𝑚𝑠𝐵𝑠(𝑥), (8)

𝛼𝑖(𝑥) =

𝐾2∑
𝑠=1

𝑔−1(𝑎𝑖,𝑠)𝐵𝑠(𝑥), (9)

𝜂𝑘(𝑥) =

𝐾3∑
𝑠=1

𝑛𝑘,𝑠𝐵𝑠(𝑥), (10)

𝑚𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑠 ≤ 𝐾1, (11)
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𝑎𝑖,𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑠 ≤ 𝐾2, (12)

𝑛𝑘,𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑘 ≤ 𝑟, 1 ≤ 𝑠 ≤ 𝐾3, (13)

where 𝐵𝑠 are B-spline basis functions. The subscripts i and k refer to the time-constant dimension of the parameters (i.e.,
𝑖 = 1, … , 𝑝 and 𝑘 = 1,… , 𝑟), while s refers to the dimension of the B-splines functions.
For the unconstrained parameters 𝑚𝑠 and 𝑛𝑘,𝑠 (which respectively refer to the intercept and the effect of explanatory

covariates) we assume independent Gaussian priors in Equations (11) and (12) with variance equal to 100 tomake the prior
weakly informative. With reference to the constrained autoregressive parameter, we may specify a uniform prior in order
to satisfy the stationarity conditions of time-constant models.
However, from a computational viewpoint, this implies that the autoregressive parameters (𝛾𝑖) are to be sampled

in a bounded space between —1 and 1, reducing the efficiency of the Markov chain Monte Carlo (MCMC) posterior
approximation.

𝛾𝑖 ∼ 𝑈(−1, 1), (14)

where 1 ≤ 𝑖 ≤ 𝑝. We therefore propose a parameter transformation, mapping the bounded parameter vector Θ to an
unbounded parameter vector 𝑢 to improve sampling efficiency. The proposed mapping function is the following:

𝑔(𝑥) = log

(
1 − 𝑥

1 + 𝑥

)
, (15)

where 𝑥 ∼ 𝑈(−1, 1). In detail, the final autoregressive parameter (𝑎𝑖,𝑠) to be sampled in Langevin Monte Carlo (LMC)
algorithm is obtained as follows:

𝑎𝑖,𝑠 = 𝑔(𝛾𝑖), 𝑎𝑖,𝑠 ∼ 𝑁(0, 100), (16)

where 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑠 ≤ 𝐾2. In this way, we put normal priors on the transformed B-spline coefficients to be sampled
within the LMC algorithm and then transformed back the parameters for the likelihood function (𝑔−1(𝑎𝑖,𝑠), where 𝑔−1 is
the inverse of function 𝑔). This method results in better mixing of the posterior samples.
The log-likelihood function of the model, combined with the proposed prior distributions, gives rise to the following

log posterior distribution (1) for the tvBAR model:

1(𝜃) ∝

𝑇∑
𝑡=1

[
𝑌𝑡

{
𝜇
( 𝑡
𝑇

)
+

𝑝∑
𝑖=1

𝛼𝑖

( 𝑡
𝑇

)
log(1 + 𝑌𝑡−𝑖) + 𝜂𝑇𝑋𝑡

}
− exp

{
𝜇
( 𝑡
𝑇

)
+

𝑝∑
𝑖=1

𝛼𝑖

( 𝑡
𝑇

)
log(1 + 𝑌𝑡−𝑖) + 𝜂𝑇𝑋𝑡

}]

−

𝐾1∑
𝑠=1

𝑚2
𝑠

2 ⋅ 100
−

𝐾3∑
𝑠=1

𝑛2𝑠
2 ⋅ 100

. (17)

3.2 tvBINGARCHmodels

Let 𝜃 = (𝜇, 𝛼𝑖 , 𝛽𝑗 , 𝜂𝑘), the vector of parameters of the INGARCHmodel. Their parameter space is given by

Θ = {𝜃 ∈ ℝ𝑝+𝑞+𝑟+1 ∶|𝛼1(𝑥)|, … , |||𝛼𝑝(𝑥)||| ≤ 1, |𝛽1(𝑥)|, … , |||𝛽𝑞(𝑥)||| ≤ 1, (18)

sup
𝑥

||||||
∑
𝑘,𝑙

𝛼𝑘(𝑥) + 𝛽𝑙(𝑥)

|||||| ≤ 1}.

The constraints in Equation (18) are inspired from the stationary condition from time-constant literature on INGARCH
models (Geir et al., 2022).
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For each B-spline basis expansion, prior distributions can be specified as follows:

𝜇(𝑥) =

𝐾1∑
𝑠=1

𝑚𝑠𝐵𝑠(𝑥), (19)

𝛼𝑖(𝑥) =

𝐾2∑
𝑠=1

𝑔−1(𝑎𝑖,𝑠)𝐵𝑠(𝑥), (20)

𝛽𝑗(𝑥) =

𝐾3∑
𝑠=1

𝑔−1(𝑏𝑗,𝑠)𝐵𝑠(𝑥), (21)

𝜂𝑘(𝑥) =

𝐾4∑
𝑠=1

𝑛𝑘,𝑠𝐵𝑠(𝑥), (22)

𝑚𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑠 ≤ 𝐾1, (23)

𝑎𝑖,𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑠 ≤ 𝐾2, (24)

𝑏𝑗,𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑗 ≤ 𝑞, 1 ≤ 𝑠 ≤ 𝐾3, (25)

𝑛𝑘,𝑠 ∼ 𝑁(0, 100), 1 ≤ 𝑘 ≤ 𝑟, 1 ≤ 𝑠 ≤ 𝐾4, (26)

𝜆0 ∼ 𝑁(0, 100), (27)

where 𝐵𝑠 are B-spline basis functions. The subscripts i, j, and k refer to the time-constant dimension of the parameters
(i.e., 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞, and 𝑘 = 1,… , 𝑟), while s refers to the dimension of the B-splines functions.
Priors for 𝜇 and 𝜂𝑘 can be recovered from Equations (11) and (13). Moreover, we need to additionally estimate the

parameter 𝜆0 to start the recursion of the conditional mean (Equation 27).
Similar to what is done in Section 3.1, we propose a transformation of the time-dependent parameters to ensure the

condition about the absolute value of their sum (Equations 24 and 25 ), taking the logarithmic function (15) to map into
an unbounded parameter space for sampling. The starting values for time-dependent parameters (𝑟𝑖 , 𝑘𝑗), together with
their transformed version (𝑎𝑖,𝑠, 𝑏𝑗,𝑠) can be summarized as follows:

𝑟𝑖 ∼ 𝑈(−1, 1), (28)

𝑘𝑗 ∼ 𝑈(−1, 1), (29)

𝑎𝑖,𝑠 = 𝑔

(
𝑟𝑖 + 𝑘𝑗

2

)
, 𝑎𝑖,𝑠 ∼ 𝑁(0, 100), (30)

𝑏𝑗,𝑠 = 𝑔

(
𝑟𝑖 − 𝑘𝑗

2

)
, 𝑏𝑗,𝑠 ∼ 𝑁(0, 100), (31)

where 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞, and 1 ≤ 𝑠 ≤ 𝐾 with 𝐾 = (𝐾2, 𝐾3).
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Specifically,𝑚𝑠, 𝑎𝑖,𝑠, 𝑏𝑗,𝑠, 𝑛𝑘,𝑠, and 𝜆0 are the parameters to be sampled in MCMC iterations. After sampling, the param-
eters 𝑎𝑖,𝑠 and 𝑏𝑗,𝑠 are transformed back (𝑔−1(𝑎𝑖,𝑠), 𝑔−1(𝑏𝑗,𝑠)) for the likelihood function. The posterior distribution 2 for
the Bayesian INGARCH (BINGARCH) model can then be obtained as follows for the time-varying case:

2(𝜃) ∝

𝑇∑
𝑡=1

[
𝑌𝑡

{
𝜇
( 𝑡
𝑇

)
+

𝑝∑
𝑖=1

𝛼𝑖

( 𝑡
𝑇

)
log(1 + 𝑌𝑡−𝑖) +

𝑞∑
𝑗=1

𝛽𝑗

( 𝑡
𝑇

)
𝑣𝑡−𝑗 + 𝜂𝑇𝑋𝑡

}

−exp

{
𝜇
( 𝑡
𝑇

)
+

𝑝∑
𝑖=1

𝛼𝑖

( 𝑡
𝑇

)
log(1 + 𝑌𝑡−𝑖) +

𝑞∑
𝑗=1

𝛽𝑗

( 𝑡
𝑇

)
𝑣𝑡−𝑗 + 𝜂𝑇𝑋𝑡

}]

−

𝐾1∑
𝑗=1

𝑚2
𝑗

2 ⋅ 100
−

𝐾4∑
𝑗=1

𝑛2
𝑗

2 ⋅ 100
−

𝜆2
0

2 ⋅ 100
. (32)

To calculate the posterior distribution from the previous expressions, we employ the gradient-based. The Hamiltonian
Monte Carlo (HMC) algorithm is similar to Roy and Karmakar (2021). Tuning of HMC parameters is necessary to obtain
a good acceptance rate. HMC has two parameters, the number of leapfrog steps and step length. Since gradient computa-
tion is expensive, we consider setting the number of leapfrog steps to one. In this way, HMC becomes LMC (Neal, 2011).
According to Roberts et al. (1998), the optimal acceptance rate for LMC is around 0.57. We thus maintain an acceptance
rate between 0.45 and 0.7 by adaptively tuning the step-length parameter. Based on our results, this produces excellent
mixing of the posterior samples (see Figure 3 for reference).
We want to remark that, due to the increasing complexity of the parameter space for the INGARCH model, 𝑎𝑖,𝑠, 𝑏𝑗,𝑠,

and 𝜆0 are sampled together.

4 DATA

The proposed models have been applied to two types of data sources: COVID-19 impact data (taken from the European
Centre for Disease Prevention and Control (ECDC): www.ecdc.europa.eu/en/covid-19/data) and policy intervention data
(taken from Oxford Covid-19 Government Response Tracker (OxCGRT): www.bsg.ox.ac.uk/research/research-projects/
covid-19-government-response-tracker).
FromECDC, we collected daily frequency COVID-19 count data from two representative countries: Italy and the United

States. We consider, as target response variable, the change in total positive cases, defined as the difference between the
total counts of positives for the current day and those the day before. The starting point of the time series was chosen as
the date when the country recorded more than 100 recorded cases.
We also obtained data on the taken policy measures fromOxCGRT (Hale et al., 2020), a project fromOxford’s Blavatnik

School of Government, in which each government response to the pandemic is measured according to an ordinal scale
that ranges from no measures to the most severe form of measure. Our primary interventions of interest are the measures
defined as C—containment and closure policies as well as those defined as H—health system policies.
We remark that the epidemic and the policy measures taken to tackle the epidemics have been quite heterogeneous

across countries, with NPI measures taken at the local authority level, varying across regions and across time. This
heterogeneity suggests that these covariates have an intrinsic measurement error.
Tables 1 and 2 show a preliminary analysis of the OxCGRT variables of interest. Table 1 indicates sparse frequency data,

mostly in correspondence with health system policies, which have less frequent changes over time, compared to contain-
ment and closure policies. Table 2 indicates high collinearity between policy measures, which can be explained by the fact
that NPIs have not been implemented independently of each other but, rather, in a multivariate policy mix approach.
We have addressed these issues by grouping NPIs into homogeneous categories, in line with Cowling et al. (2020) and

Davies et al. (2020) who concluded that combined interventions have been the most effective strategy. Bo et al. (2021) also
showed that social distancing in combination with other NPIs has led to a significant decrease in COVID-19 transmission.
More specifically, following Li et al. (2020), the original policy variables have been transformed from the ordinal to

the binary scale, taking a value of “0” in case of no intervention or recommended intervention and a value of “1” in
case of required intervention. We also grouped policies into five variables, following Islam et al. (2020): closure policies
(X1_closures), restrictions on mass gatherings and events (X2_events), lockdown-type policies (X3_lockdown), testing,

http://www.ecdc.europa.eu/en/covid-19/data
http://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
http://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
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TABLE 1 Frequency table of NPI variables obtained from OxCGRT. Variables have been coded on an ordinal scale according to the
severity of government response. NPIs with reference to Italy and United States are shown

NPI Country 0 1 2 3 4 5
C1_School.closing Italy 0 22 161 246 0 0

United States 0 0 98 331 0 0
C2_Workplace.closing Italy 0 33 214 182 0 0

United States 10 50 265 104 0 0
C3_Cancel.public.events Italy 0 0 429 0 0 0

United States 0 53 376 0 0 0
C4_Restrictions.on.gatherings Italy 28 0 113 17 271 0

United States 2 1 9 65 352 0
C5_Close.public.transport Italy 174 233 22 0 0 0

United States 8 421 0 0 0 0
C6_Stay.at.home.requirements Italy 88 84 236 21 0 0

United States 6 175 248 0 0 0
C7_Restrictions.on.internal.movement Italy 142 0 287 0 0 0

United States 5 49 375 0 0 0
H2_Testing.policy Italy 0 0 429 0 0 0

United States 0 0 5 424 0 0
H3_Contact.tracing Italy 0 0 429 0 0 0

United States 0 429 0 0 0 0
H6_Facial.Coverings Italy 26 0 0 0 403 0

United States 1 25 2 86 315 0
H7_Vaccination.policy Italy 293 0 110 26 0 0

United States 280 75 31 20 16 7

TABLE 2 Most significant partial correlations between NPI covariates obtained from OxCGRT. A p-value less than 0.001 is flagged with
***. Results with reference to Italy and United States are shown

Country NPI(1) NPI(2) Pcorr
Italy C1_School.closing C3_Cancel.public.events −0.623***

C3_Cancel.public.events C4_Restrictions.on.gatherings −0.955***
C4_Restrictions.on.gatherings C5_Close.public.transport 0.464***
C3_Cancel.public.events C6_Stay.at.home.requirements −0.637***
C6_Stay.at.home.requirements C7_Restrictions.on.internal.movement 0.58***
C3_Cancel.public.events H6_Facial.Coverings −0.673***

United States C3_Cancel.public.events C7_Restrictions.on.internal.movement 0.591***
C5_Close.public.transport H2_Testing.policy 0.458***
C2_Workplace.closing H6_Facial.Coverings −0.483***
C1_School.closing H7_Vaccination.policy −0.641***

tracing, and masks (X4_masks), and vaccination policy (X5_vaccines). The precise mapping between the OxCGRT
variables and ours is shown in Table 3.

5 EMPIRICAL FINDINGS

We first implemented the frequentist AR and INGARCH models using the tsglm function from the R package tscount
(Liboschik et al., 2017). As shown in Table 4, the 𝑝 order of the INGARCH structure has been selected according to the
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TABLE 3 Transformation of OxCGRT NPIs. Variables have been transformed from ordinal to binary scale taking the value of 0 in case of
“no intervention” or “recommended intervention” and 1 in case of “required intervention.” Policy variables have then been grouped based on
the thematic area of reference

NPI Description OxCGRT Country Value Freq
X1_closures Require closing of schools (or work from home) for some or all levels c1; c2 Italy 0 247

Italy 1 192
United States 0 325
United States 1 104

X2_events Require canceling of events and restrictions on gatherings between
11-100 people or less

c3; c4 Italy 0 141

Italy 1 298
United States 0 62
United States 1 367

X3_lockdown Require closing of public transport, require not leaving the house
with some exceptions and internal movement restrictions in place

c5; c6; c7 Italy 0 172

Italy 1 267
United States 0 52
United States 1 377

X4_masks Open public testing, comprehensive contact tracing and facial
coverings required outside the home

h2; h3; h6 Italy 0 36

Italy 1 403
United States 0 28
United States 1 401

X5_vaccines Availability of vaccines for two or more groups of people h7 Italy 0 303
Italy 1 136
United States 0 355
United States 1 74

TABLE 4 Selection of the order of autoregressive dependence on past counts (p) for INGARCH structure based on MAPE

Country Model p = 1 p = 7 p = 14
Italy AR 15% 24% 46%

INGARCH 15% 24% 46%
United States AR 11% 15% 29%

INGARCH 12% 16% 28%

absolute error of the median predictions with respect to the true values (median absolute percentage error (MAPE))).
Based on the mean incubation period of the disease, 𝑝 equal to 1, 7, and 14 have been tested. Results show that 𝑝 equal to
1 reports the lowest MAPE in both Italy and United States. Then, the time-dependent model structure has been extended
adding exogenous covariates for policy effect.
Additionally, we have implemented the same model structures within the Bayesian framework for which we have

developed specific R functions. Since we extend the frequentist framework models by introducing B-splines, we discuss
about the selection of the number of knots for the B-splines (Table 7) before presenting parameter estimates for both
time-constant and time-varying coefficients.
Finally, we compared and discussed the results obtained in terms of predictive performance, using the last week

of data as a test set. Point forecasts have been evaluated in terms of MAPE, whereas the whole distribution has been
evaluated using scoring rules (Gneiting & Raftery, 2007), implemented in the R package scoringutils (Bosse et al.,
2020).
The source code to reproduce the results is available as Supporting Information on the journal’s web page.
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TABLE 5 Parameter estimates and standard errors for frequentist Poisson AR/INGARCHmodels for COVID-19 data. When the p-value
against the null hypothesis of a zero coefficient is less than 0.001 the result is flagged with ***

Parameter Country Model AR Model INGARCH
𝜇 Italy 0.367*** (0.006) 0.428*** (0.007)

United States 0.526*** (0.003) 0.169*** (0.001)
𝛼 Italy 0.962*** (0.001) 1*** (0.003)

United States 0.954*** (0) 0.466*** (0.001)
𝛽 Italy −0.044*** (0.003)

United States 0.52*** (0.001)

TABLE 6 Parameter estimates and standard errors of NPI covariates for the frequentist Poisson ARX/INGARCHX models applied to the
COVID-19 data. When the p-value against the null hypothesis of a zero coefficient is less than 0.001 the result is flagged with ***

Parameter Country Model ARX Model INGARCHX
X1_closure Italy −0.03*** (0.001) −0.028*** (0.001)

United States −0.037*** (0.001) −0.013*** (0)
X2_events Italy 0.189*** (0.005) 0.224*** (0.005)

United States −0.043*** (0.002) −0.058*** (0.001)
X3_lockdown Italy 0.026*** (0.003) 0.05*** (0.003)

United States 0.055*** (0.002) 0.059*** (0.001)
X4_masks Italy 0.068*** (0.004) 0.102*** (0.004)

United States −0.04*** (0.002) −0.124*** (0.001)
X5_vaccines Italy −0.035*** (0.001) −0.042*** (0.001)

United States −0.048*** (0.001) −0.02*** (0)

5.1 Frequentist analysis

The results from the frequentist Poisson AR/INGARCHmodels, grouped by country, are shown in Table 5.
The AR estimates in Table 5 show a strong positive 𝛼1 for both countries, which indicates a positive dependence of

counts over time. The INGARCH estimates in the same table show that, for Italy, 𝛼1 is much greater than 𝛽1. This indi-
cates that short-term dependence on past observed disease counts prevails over long-term dependence: a result that could
be explained by the containment and closure measures introduced very promptly in response to the COVID-19 spread.
Differently, in the United States, the estimates for 𝛼1 and 𝛽1 have a similar magnitude, revealing the persistence of long
memory effects.
The impacts of policy measures are summarized in Table 6.
Table 6 shows that, for Italy, closure policies (X1_closures) and vaccines (X5_vaccines) have significant negative coef-

ficients, meaning that these policy measures have significantly reduced infection counts. In contrast, restrictions on
gatherings and events (X2_events), lockdownmeasures (X3_lockdown), and testing, tracing, andmasks (X4_masks) reveal
a significant positive impact on counts. This could be explained by the fact that these policymeasures are typically imposed
when the number of cases is high, leading to a “reverse effect” that leads to stronger policies when counts are higher.
The results for the United States also indicate negative significant effects for closure policies (X1_closures) and vac-

cines (X5_vaccines), but also for restrictions on gatherings and events (X2_events) and for testing, tracing, and masks
policies (X4_masks). Only lockdown-type policies (X3_lockdown) have a positive coefficient, which can be attributed to
the “reverse effect” found for Italy. These results are in line with Hsiang et al. (2020) who have found effectiveness of most
anticontagion policies in slowing down the exponential growth of the pandemic in the United States.

5.2 Bayesian analysis

To implement the proposed Bayesian time-varying models, a preliminary selection of the number of spline knots is nec-
essary. A large number of knots can cause overfitting, whereas a small number can result in underfitting. We select
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TABLE 7 Selection of the number of knots for time-varying Bayesian models based on the MAPE

Country Model Knots = 2 Knots = 4 Knots = 6 Knots = 8 Knots = 10
Italy tvBAR 15% 14% 44% 21% 17%

tvBINGARCH 100% 15% 100% 100% 18%
United States tvBAR 39% 14% 10% 18% 12%

tvBINGARCH 100% 11% 100% 100% 19%

F IGURE 1 Cubic spline fit of daily new observed cases of COVID-19 in linear scale for Italy

F IGURE 2 Cubic spline fit of daily new observed cases of COVID-19 in linear scale for the United States

the number of knots on the basis of the results from the MAPE of the tvBAR and time-varying Bayesian INGARCH
(tvBINGARCH) models, applied to the training data, as shown in Table 7.
From Table 7, the best number of knots, which minimizes the MAPE for the tvBAR model is 4 for Italy and 6 for the

United States; for the tvBINGARCHmodel, it is 4 for both countries. Figures 1 and 2 show the fitted cubic B-splines of the
daily new observed cases of COVID-19 for Italy and for the United States, applying tvBAR models with, respectively, four
and six knots.
Figure 2 shows that the peaks and the evolution of COVID-19 data are well captured by a spline with six knots for the

United States, which identifies three main peaks. Figure 1 shows that a simpler four knots spline is a good approximation
for Italy, which identifies two main peaks, smoothing the two observed peaks in the second wave of the pandemic.
To derive the posterior distributions, the LMC algorithmhas been run for 10,000 iterations, with the first 5000 discarded

as burn-in. All computations have been validated with convergence diagnostic assessments. For illustration, we report
here the trace plots of the average likelihood function deviations along the MCMC chain for the coefficient functions (𝜃),



12 GIUDICI et al.

F IGURE 3 Trace plots of average likelihood function deviations across the MCMC chain for the BINGARCHmodel

TABLE 8 Posterior mean and 5%, 25%, 75%, and 95% posterior quantiles using time-constant BAR/BINGARCH models for Italy

Parameter Model Posterior mean 5% 25% 75% 95%
𝜇 BAR 0.3837 0.3773 0.3807 0.3863 0.3903

BINGARCH 0.4356 0.4259 0.4324 0.4399 0.4422
𝛼 BAR 0.9608 0.9601 0.9605 0.9611 0.9614

BINGARCH 0.4776 0.4773 0.4774 0.4778 0.4781
𝛽 BINGARCH 0.5873 0.5824 0.5849 0.5895 0.5921

TABLE 9 Posterior mean and 5%, 25%, 75%, and 95% posterior quantiles using time-constant BAR/BINGARCHmodels for the United
States

Parameter Model Posterior mean 5% 25% 75% 95%
𝜇 BAR 0.5326 0.531 0.532 0.5329 0.5342

BINGARCH 0.18 0.1784 0.18 0.1803 0.1806
𝛼 BAR 0.954 0.9539 0.954 0.9541 0.9542

BINGARCH 0.4666 0.4664 0.4665 0.4667 0.4668
𝛽 BINGARCH 0.5183 0.5182 0.5183 0.5184 0.5185

calculated with the following formula:

1

𝑇

[
𝑇∑
𝑗=1

(𝜃(𝑗∕𝑇)𝑡 − 𝜃(𝑗∕𝑇)𝑡+1)2

]1∕2
, (33)

where 𝜃(𝑗∕𝑇)𝑡 represents the tth postburn samples with T= 5000 post burn iterations. For explanatory purposes, the trace
plots for 𝜃 = {𝜇, 𝛼𝑖, 𝛽𝑗, 𝜂} with regard to the BINGARCH model are reported in Figure 3. They exhibit efficient mixing of
the posterior samples.
The posterior distributions of the time constant parameters are given in Tables 8 and 9 for both countries.
FromTables 8 and 9, note that, for theUnited States, the frequentist findings in Section 5.1 are confirmed by the Bayesian

estimates: both short-term and long-term dependence of counts are present. The same result is found for Italy, which is
different fromwhat occurred with the frequentist estimates, and consistent with the similarity between the two countries.
We now examine the posterior distributions of the time-varying coefficients. Figures 4 and 5 depict the time evolution of

the estimated 𝜇 and 𝛼1 from the Bayesian AutoRegressive (BAR) models for Italy and the United States. Figure 4 suggests
that, for Italy, the estimated autoregressive coefficient of order 1 has a high impact on disease counts at the beginning of
the period of analysis: the first wave of the pandemic. The impact starts to decrease when the number of cases decrease
and increases in correspondence to the second wave of the pandemic. An almost opposite behavior is shown by the mean
trend, which depends on the stock of cases, rather than on their flows. In April 2021, decreasing autoregressive coefficient
estimates emerge, together with a low mean trend, resulting in a decreasing magnitude of the pandemic.



GIUDICI et al. 13

F IGURE 4 Time-varying posterior coefficient distribution (tvBAR model) for Italy

F IGURE 5 Time-varying posterior coefficient distribution (tvBAR model) for the United States

Figure 5 suggests that, for the United States, no evident turning points in the trend of estimated functions appear;
the autoregressive coefficient is almost always close to 1 with a high mean trend. In the last period of analysis, the
autoregressive component decreases and the mean trend becomes the prevailing factor.
Figures 6 and 7 report the time evolution of the 𝜇, 𝛼1, and 𝛽1 estimated parameters from the BINGARCHmodels.
For Italy, Figure 6 confirms the results from the BAR model, also showing an increasing contribution of the condi-

tional mean in the initial period of analysis, reaching the peak in the summer, where the contagion was decreasing and
quite stable.
For the United States, Figure 7 reports a higher contribution of 𝛼1 over 𝛽1 during the first wave of the pandemic and

the opposite behavior in the second wave. A growing mean trend is still present in April 2021.
The further step of the analysis involves adding NPIs covariates within the proposed modeling framework, comparing

the results from the BAR and BINGARCH models. Tables 10 and 11 show the results, when time constant parameters
are considered.
The frequentist results in Table 6 are confirmed by the Bayesian posterior estimates in Tables 10 and 11. Table 10 suggests

that for Italy the closures of schools and workplaces (X1_closures) and vaccination policy (X5_vaccines) are both effective
in reducing COVID-19 counts; whereas other variables have a positive sign. Table 11 confirms that, in the United States,
most policies (with the exception of lockdown measures) reduce COVID-19 counts.
When time-varying parameters are considered, the median point estimates in Tables 10 and 11 are replaced by a

range of estimates, corresponding to different time points. Figures 8 and 9 show the results for Italy and the United
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F IGURE 6 Time-varying posterior coefficient distribution (tvBINGARCHmodel) for Italy

F IGURE 7 Time-varying posterior coefficient distribution (tvBINGARCHmodel) for the United States

TABLE 10 Posterior mean and 5%, 25%, 75%, and 95% posterior quantiles of NPI covariates using time-constant BARX/BINGARCHX
models for Italy

Parameter Model Posterior mean 5% 25% 75% 95%
X1_closures BARX −0.0243 −0.0268 −0.0259 −0.0229 −0.0218

BINGARCHX −0.0223 −0.0237 −0.0229 −0.0217 −0.0207
X2_events BARX 0.1916 0.189 0.1903 0.193 0.1942

BINGARCHX 0.2327 0.2294 0.2312 0.2343 0.2352
X3_lockdown BARX 0.0307 0.0271 0.0296 0.032 0.0329

BINGARCHX 0.0478 0.0457 0.0469 0.0487 0.0503
X4_masks BARX 0.0731 0.0703 0.0722 0.0743 0.0752

BINGARCHX 0.1088 0.1064 0.1076 0.1101 0.1124
X5_vaccines BARX −0.0301 −0.0319 −0.0308 −0.0293 −0.0282

BINGARCHX −0.0378 −0.0399 −0.0388 −0.0369 −0.0354

States, comparing the median estimates of the Bayesian AutoRegressive eXogenous (BARX) models with the estimates
of the time-varying Bayesian AutoRegressive eXogenous (tvBARX) models. In addition, we consider different lag length
windows of 1, 7, and 14 days to identify a possible time lag between policy interventions and their epidemiological effect.
From Figure 8, we can gauge that a time lag of about 1–2 weeks seems to increase the impact of covariates representing

containment and closure policies (X1_closure), confirming that a large number of days are needed between the activation
of this type of policy and the realization of its epidemiological effect. Figure 9 suggests a more immediate time impact of
policies for the United States, as they lead to more negative estimates without time lag or with a delay of at most 1 day.
Both Figures 8 and 9 show a large variation in policy effects within the considered period. In particular, the effects

of lockdowns (X3_lockdowns) and testing, tracing, and masks (X4_masks) vary much more than any of the other policy
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TABLE 11 Posterior median and 5%, 25%, 75%, and 95% posterior quantiles of NPI covariates using time-constant BARX/BINGARCHX
models for the United States

Parameter Model Posterior mean 5% 25% 75% 95%
X1_closures BARX −0.0369 −0.0378 −0.0374 −0.0365 −0.036

BINGARCHX −0.0129 −0.0132 −0.0131 −0.0128 −0.0126
X2_events BARX −0.0432 −0.0469 −0.0443 −0.0417 −0.0405

BINGARCHX −0.056 −0.0565 −0.0561 −0.0559 −0.0557
X3_lockdown BARX 0.04 0.0366 0.0384 0.0424 0.0432

BINGARCHX 0.0517 0.0513 0.0515 0.0517 0.0525
X4_masks BARX −0.0421 −0.045 −0.044 −0.0405 −0.0386

BINGARCHX −0.1234 −0.1239 −0.1237 −0.1231 −0.1219
X5_vaccines BARX −0.0476 −0.0492 −0.0482 −0.047 −0.0463

BINGARCHX −0.0202 −0.0207 −0.0203 −0.02 −0.0197

F IGURE 8 Time-constant (BARX) versus time-varying (tvBARX) posterior coefficient estimates for NPI covariates (Italy). The range of
variation has been computed from the min-max range of the posterior median over the time interval of interest
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F IGURE 9 Time-constant (BARX) versus time-varying (tvBARX) posterior coefficient estimates for NPI covariates (United States). The
range of variation has been computed from the min-max range of the posterior median over the time interval of interest

measures. This can be attributed to the presence of reverse causality effects, as policies have been implemented in response
to the rise in pandemic counts.
Overall, it can be concluded that Bayesian estimates are in line with frequentist ones since the model structure is the

same in the time constant case, but, additionally, incorporate greater uncertainty by means of the posterior distribution
and the time-varying coefficient estimates.

5.3 Model comparison

All models have been assessed in terms of the absolute error of the median forecasts, calculated as the absolute value of
the difference between the true values and median posterior forecasts obtained from MCMC iterations. A high MAPE
means that the median forecasts tend to be far away from the true values.
The accuracy of model prediction intervals has also been evaluated in terms of overprediction, underprediction, and

bias, calculated from the scoring rules applied to the predictive Monte Carlo samples. They are defined with respect to the
upper bound (overprediction) or lower bound (underprediction) of the prediction interval. The bias is a measure between
—1 and 1 that expresses the tendency to underpredict (—1) or overpredict (1) the true values. All posterior predictions
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TABLE 1 2 Model comparison for Italy with the Bayesian AR models

Model Set MAPE Under Over Bias
BAR Train 15% 672 672 0.13

Test 36% 0 3576 1
BARX Train 15% 646 647 0.053

Test 28% 0 2934 1
tvBAR Train 15% 362 369 −0.019

Test 10% 10 950 0.357
tvBARX Train 12% 128 155 0.002

Test 15% 11 128 0.057

TABLE 13 Model comparison for Italy with the Bayesian INGARCHmodels. Note that the BINGARCHmodel specification has not
been reported due to low-performance metrics

Model Set MAPE Under Over Bias
BINGARCHX Train 15% 446 463 0.073

Test 28% 0 1671 0.686
tvBINGARCH Train 15% 572 579 0.004

Test 9% 27 1718 0.554
tvBINGARCHX Train 17% 360 399 −0.118

Test 21% 440 479 −0.074

TABLE 14 Model comparison for the United States with the Bayesian AR models

Model Set MAPE Under Over Bias
BAR Train 11% 5352 5354 0.046

Test 50% 1520 18098 0.714
BARX Train 11% 5088 5088 0.047

Test 31% 3003 12170 0.714
tvBAR Train 10% 4426 4472 −0.034

Test 32% 3455 6700 0.443
tvBARX Train 11% 3942 3977 −0.037

Test 29% 4410 7816 0.436

have been evaluated both on the train and on the test set (one week ahead). Tables 12 and 13 give the results of model
comparison for Italy, whereas Tables 14 and 15 show the results for the United States.
The results show that most of the proposed models fit the data quite well. For Italy, the tvBARX model seems to be the

best, with a smallMAPE (equal to 12%) on the training set and a bias almost equal to 0. Themodel also performs quite well
on test data, with a 15%MAPE and a bias equal to 0.057. Similar conclusions are obtained for the United States, although
the bias on the test set is higher (0.436), consistent with the higher number of cases with respect to Italy.
To further demonstrate the accuracy of our proposed models, Figures 10 and 11 plot the posterior median of the fitted

and predicted values, together with the number of observed cases of COVID-19 for Italy and theUnited States. The interval
range (50–90%) has been added to both figures.
From Figures 10 and 11 both models appear to perform quite well.
We finally remark that our proposed TvBINGARCHX model was employed within the ECDC European Forecast Hub

initiative and compared with many other models that attempted to predict counts of positive cases from 1 to 4 weeks
ahead. The latter model was chosen since allows to account for both short-term and long-term dependence together with
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TABLE 15 Model comparison summary for the United States with the Bayesian INGARCHmodels

Model Set MAPE Under Over Bias
BINGARCH Train 12% 5110 5116 −0.05

Test 33% 2684 12016 0.714
BINGARCHX Train 12% 4998 5022 −0.013

Test 26% 3706 8168 0.671
tvBINGARCH Train 11% 2304 2219 −0.033

Test 60% 131 4976 0.414
tvBINGARCHX Train 10% 247 219 −0.017

Test 35% 1353 9421 0.717

F IGURE 10 Predictions versus observed
values over train and test data, with daily frequency
(tvBARX model for Italy)

F IGURE 11 Predictions versus observed
values over train and test data, with daily frequency
(tvBARX model for the United States)

policy effects. The countries of interest were France, Germany, and Italy. Table 16 summarizes the evaluation metrics for
the submission period that goes from March 2021 to November 2021, showing the best performance for Germany, with a
bias equal to 0, slightly higher for Italy (0.6), and France (0.7). Real-time forecasts of cases are really challenging, given
data issues in COVID-19 databases and intrinsic model error together with changing policies, population behavior, and
testing procedures.

TABLE 16 Evaluation metrics of weekly forecasts made with the tvBINGARCHX model for Germany, France, and Italy for the
European Forecast Hub project summarized throughout all the submission period (from 8 March 2021 tol 29 November 2021)

Location Under Over Bias
DE 2 0 0
FR 0 1858 0.7
IT 0 3124 0.6
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6 DISCUSSION

Motivated by the need to deliver reliable estimates of the COVID-19 contagion dynamics, in this paper we have provided
novel Bayesian Poisson autoregressive models, with time-varying coefficients. While time-varying coefficients allow to
better take into account of nonlinear growth patterns, the Bayesian framework allows to incorporate the uncertainty of
model outputs. The addition of policy intervention variables allows to better understand the timing, sign, and magnitude
of the policy measures undertaken by the governments to face the pandemic.
The application of themodel to two paradigmatic cases as Italy and the United States reveals that some combinations of

policy interventions together with the first phase of the vaccination campaign are associated on average with a reduction
in the incidence of COVID-19. In detail, findings suggest beneficial effects of the closure of schools and workplaces for
both countries. We also found that earlier implementation of restrictions results in a greater reduction in the incidence of
COVID-19 for Italy. The same conclusion seems not to be shared by the United States.
Accuracy evaluation of our model prediction intervals shows good in-sample and out-of-sample performance. With

respect to the latter, since our tvBINGARCHX model has also been employed within the ECDC European Forecast Hub
initiative, low error with respect to 1–4 weeks ahead forecasts confirm the previous results.

6.1 Literature comparison

Agosto et al. (2021) extended the log-linear Poisson autoregression (Geir et al., 2022) to epidemiologic contagion. The
frequentist framework of our paper (Section 5.1) refers to this model, being the starting point of our analysis and themodel
against which comparisons have been made with the Bayesian framework. Unlike Agosto et al. (2021), policy covariates
have been introduced.
The Bayesian framework instead introduces the time-varying models of Roy and Karmakar (2021) and evaluates their

performances against the extended structure with time-varying policy covariates. Time constant coefficient models have
also been added to have a direct comparison with Agosto et al. (2021) in the Bayesian framework. So, the model structure
has been recovered and extended from these two contributions in terms of policy covariates.
On the other hand, in terms of policy evaluation, Bo et al. (2021) and Islam et al. (2020) have been recalled as a starting

point for policy definition and evaluation. The effectiveness of NPIs was evaluated by Bo et al. (2021) in terms of time-
varying reproduction number (Rt) while Islam et al. (2020) evaluated policies in terms of counts, more similar to our
approach. We confirm results of Bo et al. (2021) and Islam et al. (2020) on the effectiveness of distancing policies but we
extend their work by introducing and quantifying the effectiveness of vaccines. Similar Islam et al. (2020), we introduce
lag effects and a combination of policies, resulting in a better evaluation of policy effects.

6.2 Strengths and limitations of this study

The strength of our study relies on bothmethodological extension and epidemicmonitoring. The structure of our proposed
methods shows both extensions of previous works in terms of time-dependence structure (i.e., time-varying coefficients)
and exogenous components of the model (i.e., policy covariates). Our model formulation is more flexible since it allows
to consider both time dependence structure in terms of autocorrelation with previous counts but also with exogenous
covariates. Alternative time lags allow to capture the timing of the effect of public interventions on the trajectory of the
pandemic. Furthermore, the time-varying coefficient framework allows both to model rapid changes of COVID-19 spread
and address overdispersion issues.
At the same time, our study is also subject to several limitations. First, data quality could be an issue for forecasting

models, especially in terms of the measurement of policy covariates. We relied on OxCGRT variables to represent gov-
ernment interventions, but it is really challenging to collect information on the exact date, nature, and extent of policies
undertaken by the different countries. Measurement with error could result in higher model bias. The discussion could
be extended in the same way with regard to pandemic counts since day-to-day reports are usually made up of errors. In
the end, real-time forecasts of cases are really challenging, given data issues in COVID-19 databases and intrinsic model
error together with changing policies, population behavior, and testing procedures.
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6.3 Implications for policy-makers

Quantifying the impact of NPIs is a critical step in ensuring a strong public health response to COVID-19 in the first phase
of the vaccination campaign.
Risk factors for cluster formation are expected to be similar across countries, including closed and poorly ventilated loca-

tions together with crowded places where people have limited possibility for physical distancing. High-risk environments
include venues, events, and activities with certain environmental conditions. As a result, the findings suggest beneficial
effects of the closure of schools and workplaces for both countries, the latter representing a possible option for reducing
transmission but with a large-scale economic and social impact.
Mobility plays an important role in human-to-human transmission. However, given the difference in terms of pop-

ulation size, limiting people’s movement and gathering by requiring public transport closures in a combination of
stay-at-home orders, and internal movement restrictions allows to decrease municipal (and regional) mobility fluxes and,
consequently, the infection rate in Italy. On the other hand, requiring canceling gatherings and events at the stricter level
(between 11 and 110 people or less) is effective in large countries such as the United States.
We also found that earlier implementation of restrictions results in a greater reduction in the incidence of COVID-19

in Italy. The impact on the trajectory of infection changes for the United States, being more immediate. However, more
factors need to be accounted for to obtain more accurate conclusions for both countries.
While NPIs reduce transmission rates, vaccination primarily reduces symptomatic disease, hospitalization, and death

from infection, as well as infection rates to a lesser amount. Our findings show that vaccination is effective on epidemic
evolution but in combination with some NPIs, advocating for the need to keep NPIs in place during the first phase of the
vaccination campaign.
However, our results regarding several health system interventions need to be cautiously interpreted. The noneffective-

ness of some NPIs can be attributed to several factors. For example, if the outcome of the study is related to the number of
cases, as case detection improves through more effective testing and tracing, the number of cases reported will increase
without representing a real rise of cases. Finally, for both countries, we have found a reverse effect of some policies,
consistent with the fact that policy measures are triggered by the increase in COVID-19 counts.

6.4 Further studies

Further extensions of the work in the paper should consider the inclusion of finer policy measurements, as new databases
become available; and, possibly, the inclusion of spatial dependence in the model, especially for large countries such as
the United States, as longer time series become available. For all countries, including Italy and the United States, it would
also be important to include policy and contagion data at the subnational and regional level, if available, to better capture
spatial variation.
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APPENDIX: ABBREVIATIONS
AR AutoRegressive

ARX AutoRegressive eXogenous
ARMA autoregressive moving average
BAR Bayesian AutoRegressive

BARX Bayesian AutoRegressive eXogenous
BINGARCH Bayesian INGARCH

BINGARCHX Bayesian INGARCH eXogenous
ECDC European Centre for Disease Prevention and Control
GLM generalized linear model
HMC Hamiltonian Monte Carlo

INGARCH Integer-Valued Generalized Autoregressive Conditional Heteroskedasticity
INGARCHX Integer-Valued Generalized Autoregressive Conditional Heteroskedasticity eXogenous

LMC Langevin Monte Carlo
MAPE median absolute percentage error
MCEM Monte Carlo expectation maximization
MCMC Markov chain Monte Carlo
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NPIs Non-pharmaceutical interventions
OxCGRT Oxford Covid-19 Government Response Tracker

PAR Poisson AutoRegressive
SIR Susceptible-infected-recovery

tvBAR time-varying Bayesian AutoRegressive
tvBARX time-varying Bayesian AutoRegressive eXogenous

tvBINGARCH time-varying Bayesian INGARCH
tvBINGARCHX time-varying Bayesian INGARCH eXogenous
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