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A B S T R A C T

Increasingly complex learning methods such as boosting, bagging and deep learning have made ML models
more accurate, but harder to interpret and explain, culminating in black-box machine learning models. Model
developers and users alike are often presented with a trade-off between performance and intelligibility,
especially in high-stakes applications like medicine. In the present article we propose a novel methodological
approach for generating explanations for the predictions of a generic machine learning model, given a specific
instance for which the prediction has been made. The method, named AraucanaXAI, is based on surrogate,
locally-fitted classification and regression trees that are used to provide post-hoc explanations of the prediction
of a generic machine learning model. Advantages of the proposed XAI approach include superior fidelity to the
original model, ability to deal with non-linear decision boundaries, and native support to both classification
and regression problems. We provide a packaged, open-source implementation of the AraucanaXAI method and
evaluate its behaviour in a number of different settings that are commonly encountered in medical applications
of AI. These include potential disagreement between the model prediction and physician’s expert opinion and
low reliability of the prediction due to data scarcity.
1. Introduction

In recent years, an interesting trend in artificial intelligence (AI),
now largely known as eXplainable AI (XAI), has been gaining traction.
Increasingly complex learning methods such as boosting, bagging and
deep learning have made ML models more accurate, but harder to un-
derstand and interpret, often imposing a trade-off between performance
and intelligibility (e.g. using a model which is a white-box, despite
suboptimal performance) [1]. In particular, the last ten years have seen
a resurgence of the popularity of neural networks, following the ‘‘deep
learning revolution’’ [2], as well as highlighted superior performance
of ensemble algorithms like gradient boosting [3] in a number of
applications. These advancements are often associated with increased
complexity of the ML models, which results in increased difficulty to
understand their internal functioning and outputs.

In order to respond to this comprehensibility challenge, a num-
ber of researchers are actively working on ways to interpret or ex-
plain the model’s output [4]. XAI is indeed a re-emerging research
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trend, boosted by recently introduced regulations such as the European
Union’s GDPR2 and its ‘‘right to an explanation’’ [5], the very recent EU
Artificial Intelligence Act [6], as well as the US government’s Algorith-
mic Accountability Act of 2019, and the U.S. Department of Defense’s
Ethical Principles for Artificial Intelligence. Fairness-, accountability-
, and transparency- related requirements are even more essential in
AI applications to medicine (AIM) where AI often supports high-stakes
decisions in diagnosis, prognosis and treatment [7,8]. A testimony to
this fact is the embedding of explanation facilities as an integral part
of very early examples of AIM expert systems such as MYCIN [9].

The concepts of ‘‘interpretability’’ and ‘‘explainability’’ are often
used interchangeably, denoting the still incomplete process of laying
common ground in XAI terminology. However, an interesting distinc-
tion is proposed by Holzinger et al. [10] who define interpretable
AI as ante-hoc property of ‘‘glass box’’ (also known as ‘‘transparent’’)
ML models, and explainable AI as post-hoc explanation or inspection
methods for ‘‘black box’’ ML models.
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Following Holzinger’s categorization, in this paper we propose a
novel post-hoc, model-agnostic, local explanation method for poten-
tially ‘‘black box’’ ML models — namely an explainable AI (XAI)
method. We name our proposed approach AraucanaXAI since the gen-
erated explanations are based on Classification And Regression Trees
(CART), with a reference to the Araucaria Araucana tree species, na-
tive to central and southern Chile, which is commonly known as the
‘‘monkey puzzle tree’’ in English-speaking countries.

1.1. Related work

We scope our overview of related work to directly comparable
approaches for model-agnostic, post-hoc local explanation. Several ap-
proaches have indeed been proposed to tackle the post-hoc local ex-
plainability problem, and we refer the reader to [4,11–15] for more
comprehensive literature reviews.

Among others, the most used and cited methods are LIME [16] and
SHAP [17].

SHAP (SHapley Additive exPlanations) uses a principle from coali-
tional game theory, namely Shapley values, to fairly distribute the
payout of a game among a set of players. In the ML context, the game
is the prediction for a single instance, while the players are the feature
values of the instance cooperating to receive the gain. This gain consists
of the difference between the Shapley value of the prediction and the
average of the Shapley values of the predictions among the feature
values of the instance to be explained [17].

LIME’s underlying hypothesis is that the behaviour of a complex,
black-box ML model can be locally approximated by a simpler, more
interpretable model. Specifically, given a single instance, a local ex-
planation of the prediction is obtained by perturbing the instance and
by training a linear model on the perturbed samples. The linear model
estimated coefficients represent the local post-hoc explainability of the
more complex model. LIME has been widely extended to interpret
image classification [18,19].

Another local interpretability approach is the rule-based approach
Anchors [20]. Compared to LIME, Anchors has clear coverage, guaran-
teeing that the predictions of instances in the same area are almost the
same. Anchors interpretation result is a simple IF–THEN rule, which
is therefore more intuitive in comparison with LIME’s coefficients
interpretation.

The intuition behind using decision trees as better interpretable
surrogate models is not new. [21] proposes a novel model extraction
algorithm to learn an axis-aligned decision tree as a better interpretable
alternative to various black-box models including random forests, neu-
ral networks and control policies learned by the means of reinforcement
learning. Similarly, [22] proposes recursive partitioning and binary
trees as a tool to provide insights on the most important features for
classification. Both the above-mentioned approaches however target
global explainability, i.e. provide an explanation for an ML model
as a whole, instead of justifying a specific prediction. Some vertical
applications for the explanations of specific classes of problems, like
image classification, also rely on regression trees [23]. Finally, a some-
how different line of research aims at interpreting complex models
(mostly ensemble models) using decision trees as base learners, such
as Random Forest or Gradient Boosting, using a heuristic for quicker
calculation of Shapley values [24] or by efficiently extracting rules from
the weak learners (again tree-based models like decision stumps) in the
ensemble [25,26].

Quite interestingly, despite the relevant number of XAI methods
developed in the last years, a clear methodology and performance
metrics for their validation and quantitative evaluation are still lack-
ing. As an exception to this general observation, a recent comparison
between LIME, Anchors and SHAP in the medical domain has been
performed [27]. The article proposes an evaluation of XAI methods
2

according to a set of metrics, such as: A
• Identity: if there are 2 identical instances, they must have identi-
cal explanations

• Fidelity: concordance of the predictions between the XAI proxy
model and the complex model.

• Separability: if there are 2 dissimilar instances, they must have
dissimilar explanations

• Similarity: the more similar the instances to be explained, the
closer the explanations should be

• Time: average time used by the XAI method to output an expla-
nation across the entire test set

• Bias detection: ability to detect bias in training data

SHAP was found to be the fastest algorithm to output an explana-
tion, also being able to detect bias. On the other hand, LIME has the
lowest performance on identity, but the highest for separability.

1.2. Objective and original contribution

We propose AraucanaXAI as a novel XAI methodological approach,
and provide a reusable, readily-accessible python implementation of
such method.2

A recent review of XAI methods applied to data coming from
electronic health records [28] highlighted how reproducibility of many
of the works analysed is still a relevant issue, with many papers not
only failing to share datasets used in the experiments, but also the
experimental setup and pipeline as well as the open-source implemen-
tation of their XAI method and evaluation experiments. We provide
all of the previous in this article, following guidelines [29] to assess
the reproducibility of our research. Moreover, the same review [28]
points to the fact that adversarial attacks, or even slight perturbations
of the original dataset, can significantly harm XAI approaches based
on feature importance and feature ranking like SHAP and LIME. This
is confirmed by our results about identity (see Table 2) where only
AraucanaXAI, which is not based on a feature importance strategy
alone, scores perfect results across the whole span of evaluation setups.

Methodologically, what distinguishes our novel approach from the
related work discussed above is its use of a simple, yet non-linear, inter-
pretable model such as CART to generate locally accurate explanations
for predictions. Also, differently from LIME and SHAP, AraucanaXAI
is not a feature importance extraction method, but rather allows to
extract explanations that are more similar to ‘‘clinical rules’’ than
scores of importance and feature ranking. Feature-importance based
XAI methods indeed, albeit being able to inspect feature importance is
often presented as the main feature making an ML model ‘‘explainable’’
(e.g. Random Forests and Gradient boosting algorithms implemen-
tations do have embedded feature-importance calculation facilities),
are however only one facet of the more complex XAI concept [8,
30]. Also, the reliance on tree-based surrogate models translates into
virtually perfect identity and fidelity to the original model (see Ta-
ble 2). Furthermore, AraucanaXAI provides the possibility of presenting
the generated explanations in different forms (e.g. IF–THEN rules vs.
feature-importance scores vs. navigable tree structure) and accounting
for the reliability of the model prediction when producing an expla-
nation. These aspects will be further detailed and discussed in the
following sections of the article.

2. Methods

Our AraucanaXAI approach is based on a relatively small set of
general principles: given a new instance for which we want to generate
an explanation of prediction we: (i) generate a local set of neigh-
bouring instances, coming from the original training set augmented

2 Available through the pip package manager https://github.com/detsutut/
raucanaXAI#installation.

https://github.com/detsutut/AraucanaXAI#installation
https://github.com/detsutut/AraucanaXAI#installation
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with oversampling, re-labelled with the predictions of the explained
model, (ii) grow an unpruned (or lightly-pruned) tree to learn the
explainer as a white-box model, with the ability to deal with non-
linear decision boundaries, (iii) navigate the explainer tree according to
feature values of the instance to be explained and use it as the proposed
explanation. Algorithm 1 presents the pseudocode of AraucanaXAI,
which implements these principles.

2.1. Dependencies and parametrization

AraucanaXAI has some dependencies from well-established methods
and implementations described in the ML literature. The local tree
model surrogates that our method uses to generate the explanations
are Brieman’s classification and regression trees (CART) [31], and in
particular we rely on scikit-learn [32] optimized implementation of
CART. Similarly, the optional pruning step of AraucanaXAI’s algorithm
is minimal cost-complexity pruning, also defined in [31]. The distance
metric, albeit configurable as a hyperparameter of the method, is by
default set to use the Gower distance [33]. Finally, for the default
oversampling step described in Algorithm 1, the currently available
choices rely on SMOTE [34], or random oversampling either from a
uniform distribution or a normal distribution.

Some of the behaviour of our XAI method have defaults, but Arau-
canaXAI allows for a higher level of customization through hyper-
parameters tuning (e.g. degree of oversampling, or pruning of the
explainer tree). Such design choices, together with guidance on how
to optimize them for AraucanaXAI users, are presented in Algorithm 1
and further analysed in the discussion section.

Algorithm 1 Local Tree-based explanation
Require:

predictive function f, instance x, distance function dist (hyperpa-
rameter), number of local neighbours N (hyperparameter), over-
sampling method Omethod (hyperparameter), pruning criteria P
(hyperparameter)

1: Compute 𝐷 = 𝑑𝑖𝑠𝑡(𝑥, 𝑧) for each training element 𝑧
2: Select the subset 𝑇𝑛 consisting of the N training samples with lowest

distance from x
3: Create a set 𝑆 of additional examples, generated from 𝑇𝑛 using
Omethod oversampling (optional).

4: Re-label the samples in 𝑇𝑛 and 𝑆 with the class predicted by f.
Define the explainer set 𝐸 as 𝑇𝑛 ∪ 𝑥 ∪ 𝑆

5: Train e as a decision tree on 𝐸. Optionally prune e according to
pruning hyperparameter P

6: Navigate explainer tree e according to feature values of x and
provide explanation of the prediction for instance x made by f

2.2. Experimental setup

We set up an experiment where we apply AraucanaXAI to syn-
thetic data with specific properties in order to provide insights into
the behaviour of our method in circumstances that are relevant to
biomedical applications. As an additional experiment that might be
closer to real-world conditions, we also test our approach on the MIMIC
dataset [35,36], and compare its performance with other state-of-the-
art XAI tools as LIME and SHAP. The source code for the experimental
setup is available on github3 and all experiments have been run on a

oogle Colab pro high-RAM instance with no hardware (GPU or TPU)
cceleration.

3 https://github.com/detsutut/AraucanaXAI/blob/master/araucana_AI_
pecial_issue.ipynb.
3

5

To generate synthetic datasets that fit our purposes, we employed
a Bayesian Network (BN) as a generative model. A Bayesian network
is a graphical model of the joint probability distribution for a set
of variables. By modelling the conditional dependencies of a set of
attributes and outcomes, BNs can be used to generate realistic synthetic
health data [37,38]. In particular, we simulated a cohort of patients
using the BN described in [39], where authors developed a proba-
bilistic causal model for the diagnosis of liver disorders. A complete
implementation of this network, quantified with proper parameters,
is available in the bnlearn R package.4 The network has 70 nodes
nd 123 arcs. Examples of nodes reported to describe the liver dis-
rder problem are age, gender, cholesterol level, hospitalization. We
enerated a dataset for the prediction of the outcome hospitalization,
ased on the remaining 69 independent variables. In particular, 10,000
atients were sampled (53% resulting in class 1 for hospitalization).
hen, ML models were trained on 95% of the set of 10,000 generated
atients, while the remaining 5% (500 instances) are reserved to be
sed as a test set to evaluate the performance of the models, but most
mportantly to evaluate our proposed XAI method. Also, to be able to
valuate the identity XAI metric, we duplicated 100 instances of the
est set to have identical patients on which to evaluate identity of the
xplanations generated by the different XAI methods. Raw synthetic
ata we generated and used in the evaluation experiments are available
n Zenodo, and the associated Data in Brief publication.5

Subsequently, we simulated a shift in the population by changing
he BN prior probabilities of some of the nodes, such as gender, age
nd hospitalization. Dataset shifts are frequent in health data since
atients’ populations can change for a variety of reasons, from different
atient selection strategies to evolving treatments and guidelines [40].
e sample 500 out-of-distribution (o.o.d) instances from the perturbed

etwork and we evaluate the performance of our XAI method, LIME
nd SHAP both on identically distributed (i.i.d) (test set) and on o.o.d
amples. The same procedure of adding 100 duplicated examples to the
est set to evaluate identity was also performed on the ood training set.

Regarding ML models we selected Logistic Regression (LR), Random
orest (RF), Gradient Boosting (GB), and Multi-Layer Perceptron (NN).
ot to influence the experiment with subjective design choices we used
efault settings for all the models, except for NN where we employed
hidden layers (instead of the default, which is 1 hidden layer) in

rder to emulate the behaviour of a ‘‘deep’’ NN. We also performed
yperparameter tuning for each of the four models employing a simple
rid-search for optimal parameters employing a nested 5-fold cross-
alidation strategy, and optimizing parameters to maximize F1 score.
he source code for the parameters optimization phase is available on
raucanaXAI’s github repository. Optimal parameters have been in turn
sed in subsequent model training, predictive performance, and XAI
valuation experiments.

For our comparisons in Tables 2–5 we choose to employ the default
yperparameters for all XAI methods, in order to allow the fairest pos-
ible comparison between them assuming usage from a naive (i.e. not
xpert) user. AraucanaXAI has a number of hyperparameters to allow
ine-grained control by the advanced user. However, our packaged
mplementation does provide defaults that can be used out-of-the-box
nd get valid local explanations. The same applies to SHAP and, to
larger extent, to LIME where also hyperparameters like size of the

eighbourhood from which the surrogate models for explanations are
erived are tunable by the user. The only exception to our commitment
o use defaults is that we set num_samples = 200 (i.e. the number of
amples from the training set from which the surrogate linear model
s derived) for LIME since this setting resulted in overly penalizing

4 https://www.bnlearn.com/bnrepository/discrete-large.html#hepar2.
5 Giovanna Nicora. (2022). AraucanaXAI - HEPAR synthetic datasets [Data

et]. In Data in Brief: Vol. under evaluation (1.0). Zenodo. https://doi.org/10.
281/zenodo.6726768.

https://github.com/detsutut/AraucanaXAI/blob/master/araucana_AI_special_issue.ipynb
https://github.com/detsutut/AraucanaXAI/blob/master/araucana_AI_special_issue.ipynb
https://www.bnlearn.com/bnrepository/discrete-large.html#hepar2
https://doi.org/10.5281/zenodo.6726768
https://doi.org/10.5281/zenodo.6726768
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results for identity and separability, probably due to the fact that
LIME’s default number of 5000 is both (a) an absolute number (while
Araucana’s default is 0.01 of the size of the original training set) and
(b) very large when compared to the size of our dataset, resulting in
the derivation of largely the same surrogate explainer model, which
negatively impacted separability and fidelity.

The MIMIC-III dataset contains clinical data and vital signs of thou-
sands of patients in the ICU. In particular, we used the preprocessed
dataset made available by the PhysioNet 2012 challenge [36]. Details
about the features set can be found in [36] and at https://physionet.
org/content/challenge-2012/1.0.0/. The binary target outcome is in-
hospital death. As a preprocessing step, we removed features with at
least 90% of missing values, leading us to filter 76 out of 125 clinical
features. Examples of retained features are age, gender and the first and
last glucose measurement for each patient. We also removed patients
with at least one missing value. The resulting dataset contains 4480
patients that survived (‘‘In-Hospital death’’ = 0) and 768 that died in
he hospital (‘‘In-Hospital death’’ = 1). We are interested in developing
model to predict in-hospital mortality from clinical data and provide

xplanations with our proposed methodology.

. Results

.1. Open-source implementation

We implemented the described method for AraucanaXAI in Python
nd make it available as a PyPi package.6 along with its source code7

n turn, we then used our implementation to carry out a comparative
valuation of AraucanaXAI versus LIME and SHAP.

.2. Comparative evaluation of XAI methods performance

Table 1 shows the predictive performance of the four ML models on
he test set (i.i.d.), the o.o.d. samples and the MIMIC dataset. It can be
bserved how, as expected, almost all the relevant performance metrics
egrade in the o.o.d. set. It is also worth mentioning that the modest
esults achieved in the MIMIC dataset case are in line with the highly
hallenging nature of the task (i.e. predicting in-hospital mortality from
he available features), as testified by the organizers of the original
hysioNet challenge in 2012. [36]. Tables 2–5 show the full set of
esults from our comparative evaluation of XAI methods performance
n both the two synthetic datasets (i.i.d and o.o.d. respectively) as well
s on the MIMIC dataset.

The identity metric (Table 3) shows consistent performance for
raucanaXAI, which has an ideal score across the board. This means

hat two identical instances always have the same explanation gen-
rated by AraucanaXAI. This is not the case for either LIME, which
ighlights that this method generates potentially unstable explanations
probably due to the random perturbation of examples that the al-
orithm includes as part of its linear surrogate model generation),
nd interestingly also for SHAP. In particular, SHAP performs with an
dentity lower than 1, and close to 0 for the case of NN, highlighting a
ossible implementation flaw for models that are not tree-based like RF
nd GB, for which an optimized heuristic calculation of SHAP values is
vailable [24].

Also, Table 2 shows how both SHAP and AraucanaXAI, when over-
ampling is turned off, present a fidelity of 1 (i.e. ability to predict
he same class as the more complex model being explained) across
ll the experiments, regardless of the predictive ML model to explain
GB, RF, LR or NN). This is marginally better than the performance of
IME, while on par with SHAP. This observation is, intuitively (since
eparability and identity are often in a trade-off similar to precision

6 https://pypi.org/project/araucanaxai/.
7 https://github.com/detsutut/AraucanaXAI.
4

and recall), balanced by the fact that separability (Table 4 is ideal
for LIME and SHAP (i.e. two different examples must have different
explanations) while significantly lower for certain uses of AraucanaXAI,
highlighting the fact that our method may actually output the same
explanation for two different instances. We stress the fact that the trade-
off between identity and separability can be controlled in AraucanaXAI
by acting on a number of the method hyperparameters, and in partic-
ular the size of the neighbourhood considered. We elaborate on this
aspect further in the discussion section.

Finally, Table 5 shows how, in agreement with the observations
in [27], our experimental results confirm that SHAP is the fastest
algorithm in all settings involving the synthetic dataset, as well as on
the MIMIC dataset when tree-based ensemble algorithms are used.

4. Discussion

AraucanaXAI is proposed as our original contribution to the range of
available local, model-agnostic, post-hoc XAI methods. Some properties
of our method, and implementation choices, make it particularly fit for
the purpose of generating locally-valid explanations for predictions of
biomedical ML-based predictive models [8]. We discuss such properties
of AraucanaXAI, and their implications, in the following subsections.

4.1. Hyperparameters selection

As previously pointed out, no hyperparameter optimization for
the XAI methods examined in the experimental evaluation was per-
formed, using the default parameters provided by the available meth-
ods implementations. However, AraucanaXAI offers the largest poten-
tial for customization for the advanced user, while still providing good
off-the-shelf usability for the novice.

First of all, the default distance function employed by the algo-
rithm is the Gower distance, which is applicable to both numeric
and categorical features and thus covers the most typical use cases.
However, a more specific choice of a distance function may be useful
in scenarios where certain features have greater weight in defining
what cases are more ‘‘similar’’ (i.e. closer according to the distance
function to be considered) [41]. This may prove useful where disease
subtypes (e.g. based on some genetic variant or other biomarkers) or
previously known outcome classes (e.g. from risk stratification models)
are previously known and the user wants to account for that during
AraucanaXAI’s neighbourhood identification step. Similarly, the num-
ber of local neighbours to be included during the generation of the
explanation influences how much the user wants the explanation to
focus on globally relevant factors (e.g. male sex and high blood pressure
are well-known risk factors for the risk of cardiac events in the general
population) compared to locally important ones (e.g. when it happens
that a great part of the neighbouring examples all happens to be taking
a blood-thinner medication, which turns out to be a determining factor
for the predictive model prediction in this narrow subset of instances).

Secondly, regarding the choice of oversampling (both the method,
and the number of synthetic examples generated are controllable
through parametrization) the default is to use none. However, in cases
where the original training set is rather sparse in specific areas of the
data space, it can be advisable to use one of the available techniques
(e.g. SMOTE for numerical data or SMOTE-NC for mixed data) in
order to increase the density of examples from which the surrogate
explainer tree would be derived. Generation of additional examples for
the explainer set (see Algorithm 1, in combination with their labelling
using the original predictive model f, is a way to probe the model
for predictions (thus potentially exposing its prediction ‘‘rationale’’)
in otherwise unexplored parts of the data space, where the new,
potentially unseen, instance to be explained may fall. For a further
discussion of such cases, and their impact on prediction reliability and
accuracy, we direct the reader to the following Section 4.3 on reliability
and oversampling.

https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/
https://pypi.org/project/araucanaxai/
https://github.com/detsutut/AraucanaXAI


Artificial Intelligence In Medicine 135 (2023) 102471E. Parimbelli et al.
Table 1
Predictive performance of Logistic Regression (LR) Gradient Boosting (GB), Random Forest (RF) and Multi-layer Perceptron (NN) on HEPAR
i.i.d test set (iid), on HEPAR o.o.d. samples (ood), and MIMIC (mim) datasets.

Accuracy Recall Precision F1

iid ood mim iid ood mim iid ood mim iid ood mim

LR 0.74 0.64 0.86 0.65 0.68 0.29 0.82 0.72 0.53 0.72 0.70 0.38
RF 0.74 0.62 0.86 0.66 0.77 0.30 0.81 0.66 0.51 0.72 0.71 0.38
GB 0.75 0.66 0.85 0.65 0.72 0.30 0.84 0.73 0.49 0.73 0.72 0.37
NN 0.74 0.65 0.74 0.65 0.63 0.56 0.82 0.75 0.30 0.72 0.69 0.39
Table 2
Fidelity performance of AraucanaXAI, LIME and SHAP evaluated on synthetic and
MIMIC datasets. Logistic regression (LR), Random Forest (RF), Gradient Boosting (GB)
and Multi-Layer Perceptron (NN).

Fidelity

iid ood mim

AraucanaXAIa

LR

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 0.979 ± 0.002 0.672 ± 0.049 0.939 ± 0.006
LIME 0.989 ± 0.001 0.967 ± 0.007 0.970 ± 0.001
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

AraucanaXAIa

RF

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 0.998 ± 0.001 0.696 ± 0.026 0.928 ± 0.004
LIME 0.997 ± 0.001 0.946 ± 0.009 0.967 ± 0.003
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

AraucanaXAIa

GB

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 0.973 ± 0.002 0.666 ± 0.046 0.747 ± 0.021
LIME 0.985 ± 0.001 0.947 ± 0.015 0.964 ± 0.000
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

AraucanaXAIa

NN

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 0.963 ± 0.003 0.645 ± 0.043 0.938 ± 0.008
LIME 0.980 ± 0.001 0.986 ± 0.005 0.964 ± 0.002
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

aOversampling turned off for AraucanaXAI.

Table 3
Identity performance of AraucanaXAI, LIME and SHAP evaluated on synthetic and
MIMIC datasets. Logistic regression (LR), Random Forest (RF), Gradient Boosting (GB)
and Multi-Layer Perceptron (NN).

Identity

iid ood mim

AraucanaXAIa

LR

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.714 ± 0.032 0.490 ± 0.029 0.003 ± 0.005

AraucanaXAIa

RF

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

AraucanaXAIa

GB

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

AraucanaXAIa

NN

1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
AraucanaXAI 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.283 ± 0.032 0.072 ± 0.015 0.000 ± 0.000

aOversampling turned off for AraucanaXAI.

Finally, the pruning hyperparameters, allow for control of the com-
plexity of the explanations generated by AraucanaXAI. Whereas an
unpruned (or very deep) tree would guarantee maximal fidelity and
separability of generated explanation, it may also result in overly
complex explainer trees that might damage human readability. We
control the pruning of the generated explainer trees using the same
set of parameters of the scikit-learn’s CART implementation, both for
leveraging its popularity in the ML and data-science communities, and
accounting for different strategies for pruning (setting the max number
5

of splits, vs. the maximum number of leaf nodes vs. the minimum
Table 4
Separability performance of AraucanaXAI, LIME and SHAP evaluated on synthetic and
MIMIC datasets. Lower scores are better. Logistic regression (LR), Random Forest (RF),
Gradient Boosting (GB) and Multi-Layer Perceptron (NN).

Separability

iid ood mim

AraucanaXAIa

LR

0.469 ± 0.000 0.000 ± 0.000 0.027 ± 0.000
AraucanaXAI 0.106 ± 0.018 0.036 ± 0.028 0.432 ± 0.049
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

AraucanaXAIa

RF

0.199 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
AraucanaXAI 0.205 ± 0.016 0.046 ± 0.025 0.734 ± 0.023
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

AraucanaXAIa

GB

0.433 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
AraucanaXAI 0.095 ± 0.018 0.034 ± 0.038 0.024 ± 0.008
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

AraucanaXAIa

NN

0.167 ± 0.000 0.000 ± 0.000 0.019 ± 0.000
AraucanaXAI 0.034 ± 0.009 0.030 ± 0.015 0.421 ± 0.057
LIME 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
SHAP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

aOversampling turned off for AraucanaXAI.

Table 5
Running time performance of AraucanaXAI, LIME and SHAP evaluated on synthetic
and MIMIC datasets. Lower scores are better. Logistic regression (LR), Random Forest
(RF), Gradient Boosting (GB) and Multi-Layer Perceptron (NN).

Time (s)

iid ood mim

AraucanaXAIa

LR

144.912 ± 0.000 3.886 ± 0.000 85.310 ± 0.000
AraucanaXAI 191.979 ± 2.750 5.177 ± 0.689 66.748 ± 2.516
LIME 1704.014 ± 8.043 61.576 ± 0.675 7.781 ± 0.373
SHAP 36.86 ± 2.908 2.267 ± 0.024 36.860 ± 2.908

AraucanaXAIa

RF

2192.174 ± 0.000 6.151 ± 0.000 1020.710 ± 0.000
AraucanaXAI 2407.212 ± 12.725 62.462 ± 0.731 957.385 ± 19.711
LIME 1704.014 ± 8.043 92.523 ± 1.169 228.627 ± 1.804
SHAP 250.471 ± 0.610 3.456 ± 0.012 250.471 ± 0.610

AraucanaXAIa

GB

144.912 ± 0.000 6.151 ± 0.000 102.314 ± 0.000
AraucanaXAI 164.761 ± 2.393 3.633 ± 0.038 75.557 ± 2.347
LIME 1262.478 ± 47.103 62.543 ± 0.675 0.106 ± 0.006
SHAP 0.045 ± 0.012 0.005 ± 0.000 0.045 ± 0.012

AraucanaXAIa

NN

355.844 ± 0.000 5.981 ± 0.000 107.694 ± 0.000
AraucanaXAI 356.179 ± 4.430 5.894 ± 0.080 86.364 ± 2.995
LIME 1270.331 ± 53.890 62.346 ± 1.171 18.698 ± 1.889
SHAP 81.853 ± 9.929 4.727 ± 1.259 81.853 ± 9.929

aOversampling turned off for AraucanaXAI.

decrease in impurity to add a further split, etc.) A deeper analysis of
these aspects is presented in the following Section 4.4.

4.2. Fidelity to the original model

Our choice of relying on CART trees as surrogate models for Arau-
canaXAI explanations has been guided by the well-known high-variance
of decision tree models. This high variance is the main factor, when
combined with a light pruning (ideally no pruning) strategy, that
guarantees a very high fidelity (i.e. the surrogate explainer model
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outputs a prediction that is coherent to the prediction of the original
explained model) to the original model predictions. This high fidelity
s particularly relevant for medical applications where there is a good
hance that explanations are more often sought in those cases where
he physician and the ML model predictions are in disagreement [42].
n these cases, either the physician is looking to question his/her expert
pinion and look for evidence that the ML model may be right (e.g. the
xplanation can highlight some evidence that the physician may have
verlooked, but the ML model picked up), or he/she is looking at the
xplanation of the model prediction (e.g. what are the feature values
hat drove the model to predict the ‘‘wrong’’ class for this particular
atient) to find ‘‘why did the AI get this one wrong’’. In both cases it
s important that if the original model prediction was wrong we want
he prediction of the explainer model to be the same, even if ultimately
ncorrect, not to correct the issue (i.e. explaining is not the same as
inding causality [7,43]). In other words, we want the explanation to
eflect what the original model ‘‘thought’’ as faithfully as possible, so
hat the insights coming from the explanation can effectively be used
or model revision/improvement, or as feedback to the physician to
hallenge his initial opinion.

.3. Reliability and oversampling

Recent work [44,45] and reports from the EU, such as the Ethics
uidelines for trustworthy AI (European Commission, Directorate-
eneral for Communications Networks, Content and Technology, Ethics
uidelines for trustworthy AI, Publications Office, 2019, https://data.
uropa.eu/doi/10.2759/177365) has analysed the importance of tech-
ical robustness and safety, which include as a key element reliability
f a ML model on new unseen example, especially when significant
ataset shift [46] exists. Analyses of ML prediction reliability are often
imed to update ML models in order to improve their ability to gen-
ralize or prevent degradation of calibration and discrimination [47].
owever, reliability is also worth thorough consideration in the context
f XAI. If a certain prediction is not reliable there is a good chance
hat the ML model may perform poorly, which is exactly when a good
ocal explanation, such as the one obtained by AraucanaXAI or similar
ethods, becomes more valuable for model inspection, debugging and,
ltimately, model update.

AraucanaXAI tackles such a problem with the introduction of a spe-
ific step in the algorithm dedicated to local neighbourhood enrichment
hrough oversampling (see steps 3 and 4 in Algorithm 1). Generating
dditional examples, not originally included in the training set of the
xplained model, is essentially a way of probing the explained model on
nseen instances. The usefulness of such an action when generating the
xplainer model is twofold. Firstly, it gives the explainer model learning

procedure the chance to use information that is at a higher resolution
(i.e. with more data points) than that used for the original model
training. Secondly, relabelling of all the instances of the explainer set E
with the predictions of the ML model is a way of making the decision
boundary of the explained model more explicit, and thus more evident
when inspecting the explanation.

Figs. 1 and 2 show examples of AraucanaXAI explanation on a
Random Forest prediction for two samples in the Test set. The first
example in Fig. 1 was incorrectly classified, while the second example
(Fig. 2) was correctly classified in class 0. As we can see, the tree
computed without oversampling (Fig. 1(a)) is very different from the
tree computed with SMOTE oversampling (Fig. 1(b)). Instead, if we
look at the second instance, the structure of the two trees, without
oversampling and with SMOTE oversampling, is the same.

Although additional experiments are needed to better assess the
relative merits and pitfalls of AraucanaXAI, these results may indicate
that within more reliable regions (i.e. where the original model is con-
fident in its prediction. See Section 4.2 for a more detailed discussion
on reliability), also the explanations are more robust to changes in the
6

hyperparameters. Instead, where the classifier is unreliable and errors
occur, the explanation is more unstable. Fig. 3 gives further insights
on how controlling the size of the neighbourhood where oversampling
happens in the AraucanaXAI algorithm (see step 3 of Algorithm 1) im-
pacts the XAI evaluation metrics. In particular, note how this parameter
has a limited impact on AraucanaXAI’s fidelity, while having a more
notable effect on identity and separability, being able to also control
the intrinsic trade-off between these two competing objectives.

Our implementation of AraucanaXAI provides the possibility to
customize the oversampling strategy through a hyperparameter. An
interesting future development may consist in providing guidance for
hyperparameters tuning of AraucanaXAI on the basis of calculated
prediction reliability, as defined in [44], of the model f on the specific
instance x being explained.

4.4. Optimizing the output of the explainer

An important aspect of the user-friendliness of XAI methods has
to do with the way the generated explanations are presented to the
user. The specific form of visualization of explanations is somewhat
independent of the methodology used to generate them. Indeed, visual
representations of feature importance scores are widely used (and
embedded) in some popular ML algorithms such as random forests,
XGB, and several attention-based deep neural networks working on text
or images [48]. Also LIME and SHAP, as well as their implementation
in popular ML libraries such as Orange (https://orangedatamining.
com/blog/explain/) and Anaconda (https://www.anaconda.com) of-
fer similar facilities. Other viable options consist in human-readable
if–then rules, and statistical-inspired solutions like presenting odds-
ratio for linear models or posterior probabilities in Bayesian settings.
Currently, AraucanaXAI implementation is a barebone Python library,
that does not provide a full-fledged user interface for inspecting and
interacting with generated explanations. However, a few approaches
can be applied ex-post to the explainer tree model to improve its
presentation to the user and ultimately improve uptake and fitness for
specific use cases in AIM. Options include: (i) presenting the entire
explainer tree (currently supported solution), (ii) navigating the tree to
extract the path that is relevant for instance x, and converting it to
a sequence of ‘‘if–then’’ rules, (iii) use the explainer tree to calculate
feature importance scores likewise LIME or SHAP (e.g. an optimized
version of SHAP that runs in polynomial time on any tree-based ML
model is available [49], and could be employed for the purpose) (4)
interesting recent work [50] proposed a logic programming method-
ology to provide a representation of a decision tree in the form of a
compact set of rules (e.g. compacting rules on the same variable, but
at different levels of the tree structure, in one single rule).

Finally, the possibility of controlling the degree of tree pruning
performed by AraucanaXAI, is a way to fine-tune the trade-off between
a virtually perfect fidelity (i.e. when pruning of the explained tree is
not performed at all) of the generated explanation in exchange for a
more compact tree structure, which directly translates in a less complex
explanation. This feature mitigates the current lack of a rich GUI for
AraucanaXAI. Future work, involving clinical experts in the definition
and empirical evaluation of what constitutes a ‘‘good explanation’’ in
the medical context as well as HCI considerations, is needed to properly
compare the alternative visualization options listed above and guide
their implementation.

4.5. Limitations

The work described in this article, as well as the proposed Arau-
canaXAI method itself, have some limitations. Firstly, evaluation of
what constitutes a ‘‘good’’ explanation for a user cannot be thoroughly
assessed without clearly defined metrics (which is currently an ac-
knowledged gap in the XAI literature [51]) and direct involvement of

the physician users themselves in a properly designed evaluation study.

https://data.europa.eu/doi/10.2759/177365
https://data.europa.eu/doi/10.2759/177365
https://data.europa.eu/doi/10.2759/177365
https://orangedatamining.com/blog/explain/
https://orangedatamining.com/blog/explain/
https://orangedatamining.com/blog/explain/
https://www.anaconda.com
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Fig. 1. Araucana explanation for a test sample in class 1, incorrectly predicted by the Random Forest as class 0. (a) explanation without oversampling. (b) explanation with
SMOTE oversampling.

Fig. 2. Araucana explanation for a test sample in class 0, correctly predicted by the Random Forest as class 0. (a) explanation without oversampling. (b) explanation with SMOTE
oversampling.

Fig. 3. Evaluation of the size of the local neighbourhood considered by AraucanaXAI on the metrics of fidelity, identity and separability (plotted as 1-separability to facilitate
visual comparison with the other metrics as ‘‘higher is better’’). Top: synthetic dataset i.i.d. (left) and o.o.d. (right), bottom-left MIMIC dataset.
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Such studies constitute future work worth pursuing, with the potential
to benefit the explainable AIM community at large [8].

Secondly, it would be interesting to provide the user with the
ability to control the number of additional samples generated in S
(see Algorithm 1) by the oversampling step. This would be partic-
ularly interesting to provide finer management of those predictions
with suboptimal reliability, as discussed in Section 4.3. Currently, our
implementation only allows the control of the oversampling strategy
via a hyperparameter, while the number of generated samples is not
tunable.

Finally, despite we provided an overview of different strategies
for presenting explanations to a user in Section 4.4, we currently do
not directly support these in our AraucanaXAI implementation. At the
moment AraucanaXAI’s way of presenting the generated explanations
relies on scikit-learn facilities for decision tree visualization.

5. Conclusion

In the present paper we presented AraucanaXAI, a model-agnostic,
post-hoc method for generating local explanations of ML model pre-
dictions. We also make an open-source implementation of the method
available for use, and run a comparative evaluation experiment to
highlight its strengths and limitations with respect to other comparable
XAI methods. A comparative evaluation of our proposed method and its
implementation is performed on both synthetic and real-world clinical
data, allowing direct comparison with state-of-the-art XAI methods
such as LIME and SHAP. AraucanaXAI’s high fidelity and identity,
combined with reasonably fast computation times make it a viable
choice for contexts like human-in-the-loop [52,53] inspection and up-
date of ML models, which is a promising direction for XAI research.
AraucanaXAI’s ability to account for, and manage low-reliability pre-
dictions, and its customizability through hyperparameters make it par-
ticularly fit for medical applications of AI that have a strong require-
ment for explainability in combination with cutting-edge predictive
performance.
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