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Mobility‑based real‑time economic 
monitoring amid the COVID‑19 
pandemic
Alessandro Spelta* & Paolo Pagnottoni

Mobility restrictions have been identified as key non‑pharmaceutical interventions to limit the 
spread of the SARS‑COV‑2 epidemics. However, these interventions present significant drawbacks 
to the social fabric and negative outcomes for the real economy. In this paper we propose a real‑
time monitoring framework for tracking the economic consequences of various forms of mobility 
reductions involving European countries. We adopt a granular representation of mobility patterns 
during both the first and second waves of SARS‑COV‑2 in Italy, Germany, France and Spain to 
provide an analytical characterization of the rate of losses of industrial production by means of a 
nowcasting methodology. Our approach exploits the information encoded in massive datasets of 
human mobility provided by Facebook and Google, which are published at higher frequencies than 
the target economic variables, in order to obtain an early estimate before the official data becomes 
available. Our results show, in first place, the ability of mobility‑related policies to induce a contraction 
of mobility patterns across jurisdictions. Besides this contraction, we observe a substitution effect 
which increases mobility within jurisdictions. Secondly, we show how industrial production strictly 
follows the dynamics of population commuting patterns and of human mobility trends, which thus 
provide information on the day‑by‑day variations in countries’ economic activities. Our work, besides 
shedding light on how policy interventions targeted to induce a mobility contraction impact the real 
economy, constitutes a practical toolbox for helping governments to design appropriate and balanced 
policy actions aimed at containing the SARS‑COV‑2 spread, while mitigating the detrimental effect 
on the economy. Our study reveals how complex mobility patterns can have unequal consequences to 
economic losses across countries and call for a more tailored implementation of restrictions to balance 
the containment of contagion with the need to sustain economic activities.

 The novel coronavirus disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2), has hit the globe in a massive way. Although the coronavirus family encompasses the virus 
which led to the Severe Acute Respiratory Syndrome (SARS) in 2003, the rapid surge in positive individuals and 
the early evidence of greater transmission indicated that SARS-CoV-2 was more contagious than previous coro-
naviruses and, therefore, potentially more dangerous for  humans1,2. As a matter of fact, despite the huge efforts 
put into place by worldwide governments to limit the spread of the epidemics, the world counts approximately 
152 million reported positive cases and 3.1 million total fatalities as of 1 May 2021.

From a socio-economic viewpoint, SARS-COV-2 has forced many governments around the world to imple-
ment several non-pharmaceutical interventions (NPIs)3–5. In the epidemiological context, NPIs refer to any 
methods which contrast the spread of an epidemic disease without the use of pharmaceutical drug treatments. 
They consist of a set of measures that can be employed at any time, and are used in the period between the 
emergence of an epidemic disease and the deployment of an effective vaccine. The US Centers for Disease Con-
trol and Prevention (CDC) distinguishes across “Personal NPIs” (hand washing, cough and sneeze covering, 
quarantine), “Community NPIs” (social distancing and closures) and “Environmental NPIs” (routine surface 
cleaning). Amongst the various forms of NPIs, mobility restrictions have been playing a key role in reducing 
SARS-CoV-2 transmission, with lockdowns exerting the most substantial  impacts4,6.

As a consequence, considerable effort has been recently put in quantifying the effects of human mobility on 
the spread of SARS-CoV-2. Recent groundwork shows how mobility habits are significant explanatory variables 
for the number of newly reported COVID-19  infections7, and concludes that SARS-CoV-2 spread is more a 
matter of network interconnectivity rather than of spatial  proximity8. As the infection rate needs to be cut down 
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drastically and rapidly to observe a consistent decrease of the epidemic spread and mortality  rate9, government 
policies aimed at contrasting SARS-CoV-2 diffusion have been sudden and numerous, with direct impact on 
human mobility, which in turn facilitates the emergence of trend breaks in the number of reported SARS-CoV-2 
cases and significantly reduces the virus  transmission10,11.

Policy restrictions have been identified as key elements to effectively limit the spread of the  virus12–17, thus 
prompting the adoption of lockdown interventions based on mobility restrictions as key strategies to limit the 
contagion. On the other hand, such policy interventions have been recognized to induce severe disruptions on 
mobility  patterns13,18 and to determine relevant economic consequences as a large portion of disposable work-
ers, i.e. individuals not infected and available to work, is prevented from keeping up working  activities19–22. For 
this reason, a big effort is put in understanding the appropriate balance between the direct effect of mobility 
restrictions on the spreading of contagion and the indirect consequences caused on economic  outcomes23–25. 
For instance, there is a flourishing literature employing mobility networks to study the diffusion of SARS-
COV23–5,12,14,15,26,27. These works combine an epidemiological perspective with a complex system approach, able 
to capture non-linear relationships in the dynamics of the underlying system, with the aim of understanding the 
impact of lockdown measures on the virus transmission. Moreover, recent studies have recognized how mobility 
reductions induce harsh negative consequences on economic systems during the lockdown phase, producing 
both a loss of aggregate economic  output22,28–31 and a contraction of consumption  expenditures32–34. The eco-
nomic assessment of mobility restriction measures is indeed of great interest for policy makers and motivates 
a growing literature related to the investigation and measurement of trade-offs between the need to limit the 
spread of contagion and the provision of adequate levels of economic  output24,25,35,36. In fact, evidence has shown 
that mobility restrictions condition both the shape of mobility networks and the body of economic systems, by 
affecting the inter-dependencies among geographical  zones29,37–39.

Monitoring the economic performance over time is a fundamental aspect of economic analysis and a key 
requirement for policymakers. One of the most commonly known and used indicators in this context is the 
Industrial Production Index. Industrial production is a measure of output of the industrial sector of the economy, 
with the industrial sector includes sub-sectors such as mining, manufacturing, electricity, gas and steam and 
air-conditioning. The Industrial Production Index specifically measures changes in the production volume of an 
economy (or country), hence providing a measure which is free of price change influences, making it a suitable 
indicator of economic activity. The index is measured against a reference period (in our case, the year 2015 is 
taken as a reference) and expresses the change in the volume of production output with respect to such baseline 
value. In other words, the Industrial Production Index monitors temporal changes in the value added of an 
economy’s industrial sector, thus boasting a close relationship with the performance of the economy as a whole. 
Although the Organisation for Economic Co-operation and Development (OECD) provides production indica-
tors for the aggregate industry and for the manufacturing and construction industries, our focus is on the total 
production index, as it measures the total output of the industrial sector of a country’s economy, and is therefore 
able to monitor a country’s economic activity in its entirety. Our focus is on industrial production rather than 
GDP, as the latter measures the aggregate final value of goods and services produced, which comprise those that 
can actually be provided under smart working regimes.

Against this background, we exploit the relationship existing between the different dimensions of human 
mobility and the real economic activity of a country, so to provide a timely monitoring indicator of the state 
of the economy. In other words, we investigate the interplay between the SARS-COV-2 NPIs, such as mobility 
restrictions, and the effects caused by such restrictions on the productive system of four representative European 
countries. In particular, this study proposes an explicit characterization of the industrial production dynamics 
which accounts for mobility patterns in Italy, France, Germany and Spain; the EU member states counting the 
largest number of total SARS-CoV-2 confirmed cases as of February 2021, as well as the top four countries in 
terms of industrial production over recent years. Taking into account for the heterogeneous characteristics of 
commuting patterns, we assess the economic consequences of various forms of lockdown policies, by studying 
the impact of human mobility patterns on the aggregate industrial production through a dynamic factor  model40 
(see Methods).

Our real-time monitoring approach is grounded on the nowcasting methodology. Nowcasting stands for 
the prediction of the present, the very near future, and the very recent past states of  variables41. The term stems 
from meteorology as a contraction of the terms “now” and “forecasting”, where it indicates the practice of 
weather forecasting on a very short term mesoscale period. Originally based on heuristic rules, it now relies on 
sophisticated statistical and econometric models. The nowcasting methodology has recently become appealing 
to economists to assess the current state of a country’s economic activity, through synthetic measures such as 
its gross domestic product (GDP) or industrial production, which are available with a significant delay, a low 
frequency and might be subject to  revisions42–47. Central banks, such as the US Federal Reserve and the European 
Central Bank, make use of nowcasting tools to monitor the state of the economy on a real-time basis, generating 
high-frequency estimates of the official statistics (see Methods).

The basic principle of nowcasting is the exploitation of information which is published at higher frequencies 
than a target variable of interest to obtain an early estimate of such variable before the official figure becomes 
available. In other words, within the nowcasting framework, by exploiting information on mobility patterns, 
we are able to build a dynamic process which provides day-by-day estimates of industrial production statistics 
that are announced at a monthly frequency and with long delays, thus providing policymakers a valuable tool 
to evaluate the magnitude of the effects of mobility restrictions on the real economy.

We rely on two unique human mobility datasets provided by Facebook (FB) and Google (GOOG) with the 
aim of building a model able to track the day-by-day economic activity of a country. Through its Data for Good 
 program48, Facebook provides near real-time massive datasets describing the phone-tracking based movements 
of individuals within and across country’s administrative regions. To help researchers in understanding the 
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pandemic, Google has also released its Community Mobility Reports, tracking changes in mobility of people 
via mobile phones across location categories, among which retail and recreation, grocery stores and pharmacies, 
workplaces and transit stations (see Methods).

The contribution of this paper is twofold. Firstly, we provide a comprehensive analysis of mobility patterns 
both from a geographical viewpoint, i.e. mobility flows across administrative regions, and from a categorical 
perspective, meaning the categories of places from/to which individuals flow. At this investigation stage, we 
study how these two dimensions of human mobility are related to the implementation of government policy 
restrictions, as measured by the Oxford COVID-19 Government Response Tracker (OxCGRT), which collects 
information on the type and severity of policy actions undertaken by governments (see Methods). Secondly, 
we exploit mobility data to assess the day-by-day changes on the countries’ economic output, as measured by 
their industrial production. Given that economic variables are generally low-frequency ones (e.g. industrial 
production is released monthly) and published with a certain delay, our proposal is of utmost importance with 
regards to policy makers’ decision making processes. Indeed, we offer an extensive tool to timely monitor and 
analyze the impact of mobility restrictions on a country’s economic activity. By combining our real-time eco-
nomic activity tracker together with epidemiological models, policy makers are able to evaluate the trade-off 
between economic and health damages due to the implementation of restrictive measures. In other words, they 
can monitor both the epidemic and economic side-effects of their restrictive measures, through the impact they 
exert on human mobility.

In Europe, on March 9th, 2020 the Italian Prime Minister announced the extension of the stringent lockdown 
measure previously adopted for 26 northern Italian provinces to the whole peninsula, with restrictions on mobil-
ity to that necessary for work and family emergencies, coming into effect the next day. In the wake of the Italian 
government, on March 14th the Spanish government formally declared state of emergency over coronavirus, 
issuing an order of general confinement for more than 46 million people. On March 17th, within the French 
country a strict nationwide lockdown came into force, with measures imposing stay-at-home, except for grocery 
shopping and other essential tasks. Unlike other European countries, Germany had stopped short of ordering 
stringent restrictions to its over 80 million population in the first instance, opting for strict social distancing 
measures which were issued on March 22nd.

Since the imposition of the first hard restrictive measures, governmental policy responses to limit the spread of 
the disease have been of various nature (see Fig. 1). Most countries started in March with restricting gatherings, 
closing schools and cancelling public events, soon extending their interventions to stay-at-home requirements, 
workplace closures and movement restrictions. After a first phase of stringent lockdown, governments acted 
with a gradual relaxation of the harshest restrictive measures until the summer period, when many restrictions, 
especially those concerning mobility and stay-at-home requirements, were lifted. The relaxation was, however, 
not uniform across countries: the German government has maintained a higher level of alert in terms of the 
number and of stringency of policies adopted, along with the Spain, if compared to Italy and France. With the 
winter and the second wave around the corner, governments resumed a large portion of mobility restrictions 

Figure 1.  Line diagrams and bar-charts showing Government policy responses. The figure reports the line 
diagrams and bar-charts expressing the evolution of government policy responses in France, Italy, Germany and 
Spain over the starting year of the pandemic. Colored bars indicate the number of measures put in place within 
each category. Solid black lines indicate the Oxford Stringency Index (OxCGRT), an additive score of nine 
indicators recording information on containment and closure policies, such as school closures and restrictions 
in movement, and health policies. The left vertical axes represent the number of policies (counts) put in place by 
the Italian, Spanish, French and German governments, while the right vertical axes report the Oxford Stringency 
Index. The horizontal axes represent time (data on government policies are available at a daily frequency).
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and stay-at-home requirements, besides exacerbating those already in place. Government policy actions have 
shocked human mobility patterns in a substantial way, with direct impacts on both SARS-CoV-2 spread and 
economic activity.

Results
The nationwide lockdown measures imposed with the beginning of the epidemic spread exerted a dramatic 
impact on different dimensions of human mobility. Figure 2 shows the geographic distribution of the difference 
in commuting patterns with respect to the pre-pandemic phase, within and between countries’ administrative 
regions at the points in time when the first lockdown measures where imposed, while Supplementary Fig. S1 
in SI illustrates the dynamics of commuting flows during a baseline period. The figure highlights a substitution 

Figure 2.  Heatmaps and line diagrams of the geography of commuting patterns. The figure reports the 
heatmaps and the line diagrams representing the mobile-phone-based commuting difference ( � commuters) in 
Italy, Spain, France and Germany at relevant dates within the first wave of the pandemic for each country with 
respect to baseline values (pre-pandemic period). In particular, the figure shows the difference in the number 
of moving people measured at relevant dates (first day of national lockdown) with respect to a baseline value 
(computed as the average of the three weeks prior to the lockdown). The color map indicates the difference 
in the number of commuting people within administrative regions, and the grey-intensity links indicate the 
difference in the amount of individuals flowing between administrative polygons. Administrative regions are 
at NUTS3 level (province) for Italy, Spain and France, while for Germany data are available at NUTS2 level 
(regional). Relevant dates represent the first day of lockdown for Italy (10 March 2020), Spain (15 March 2020), 
France (17 March 2020) and the first date available for Germany (25 March 2020).
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effect concerning the mobility between and within jurisdictions. Indeed, we observe a striking decrease in the 
commuting flows between administrative regions, accompanied by a surge in the commuting flows within 
them. The difference in the mobility between geographic zones comes as a natural consequence of the fact that 
restrictive measures did not allow people to move outside their own administrative regions. On the other hand, 
evidence suggests that people who were banned to travel outside their administrative regions tended to move 
more around their neighborhood, thus increasing the degree of mobility within their region.

In general, the largest absolute variations in mobility are registered in the areas in which metropolitan cities 
are located, where there naturally exists a high degree of mobility both within and between the geographic zones 
during normal business periods. This mostly involves the northern part of Italy, with Milan and Emilia-Romagna, 
which count industrial districts spread over the entire areas, the north-central part of Spain, the metropolitan 
area of Paris in France and the industrial districts of Köln and Düsseldorf in Germany, along with part of the 
eastern regions. However, there are some exceptions: the metropolitan areas of Madrid and Barcelona, along 
with Bavaria and the western regions of Germany, register a noticeable difference in the mobility from/to outside 
the regions, while they do not show such a large impact on the mobility within the area. This is arguably because 
many outside residents have left their living areas to go back to their places of origin.

The impact of lockdowns is not only tied to the magnitude of commuting flows, but also to the mobility trends 
across different categories of locations. Figure 3 illustrates the geographic distribution of changes in human 
mobility trends for retail and recreation (Fig. 3a), groceries and pharmacies (Fig. 3b), workplaces (Fig. 3c) and 
transit station (Fig. 3d) in the countries’ administrative regions before and after the first lockdown measures. 
People’s movements to retail and recreation sites were the ones most hardly hit by the imposition of lockdown 
measures, followed by those to transit stations and workplaces. Given the non-essentiality and consequent closure 
of retail and recreation places, all non-food product groups had shown extremely steep drops in their retail trade 
volumes, in particular the decline for textiles, clothes and footwear was drastic. Stores selling “essentials” such 
as groceries and pharmacies, on the contrary, did witness a gentler decrease in the number of visitors. On top of 
that, a few regions in Italy, especially the northern ones - firstly hit by the spread of the virus -, even exhibited 

Figure 3.  Heatmaps expressing the geography of mobility trends. The figure reports as heatmaps the phone-
tracking-based changes in mobility patterns of individuals to retail and recreation (a), grocery stores and 
pharmacies (b), workplaces (c) and transit stations (d) across administrative regions in Italy, Spain, France and 
Germany at relevant dates within the first wave of the pandemic. Colors indicate the differences in percentage 
terms with respect to baseline. Administrative regions are at NUTS2 level (regional) for all the countries under 
analysis. Relevant dates represent the first day of lockdown for Italy (10 March 2020), Spain (15 March 2020), 
France (17 March 2020) and the first date available for Germany (25 March 2020).
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increases in the mobility to groceries and pharmacies, which is traceable to the panicked shoppers stocking up 
on supplies and clearing out many supermarkets’ shelves amid the surge of SARS-CoV-2.

Changes in people’s habits are highly heterogeneous across countries and regions. Spain is the country show-
ing the largest falls in people’s mobility across different categories: northern regions, with the exception of 
Aragon, are those suffering from the highest drop in mobility across types of locations, with movements to retail 
and recreation dropping up to 90%. The magnitude of mobility variations across different location categories of 
France and Germany are quite comparable. In Germany, southern regions tend to be less affected by changes in 
mobility, whereas in eastern Germany such changes are generally steeper. Movement across categories in France 
are quite heterogeneous; however, north western regions appear to be the mostly affected ones, and Brittany 
specifically. Italy saw generally more moderate decreases, with the steeper downturns of mobility in a cluster of 
southern regions consisting of Apulia, Campania, Basilicata and Calabria, arguably because they were not among 
the northern areas which had already been quarantined before the nationwide lockdown which, in turn, showed 
lower drops in the relative mobility across location categories.

Generally speaking, the effects of policy interventions and virus spread have been determinant to the evolu-
tion of human mobility flows over time, and exerted heterogeneous effects both across countries and geographic 
zones, and over time (see Supplementary Fig. S2 in S1). The distribution of the distance travelled by commuters 
is generally centered around short path ranges during the first lockdown phases, while it gradually flattens by dis-
playing heavy tails, along with the various lifts of mobility restrictions. With the advent of the second wave after 
summer, the distribution becomes gradually less dispersed, indicating that people tend to move less, behaving 
more homogeneously. However, by comparing the timing of two waves of infections and the associated mobil-
ity restriction policies, in the latter wave we observe a more heterogeneity in people’s behavior, meaning that 
mobility restrictions did not reach the same effectiveness they achieved during the first nationwide lockdown 
phases, except for Germany. Further, the distribution of the number of commuters shows a general heterogeneity 
of the quantity of people moving within and between administrative regions during the months which follow 
the periods of strict mobility restrictions, during which a portion of people started moving more than they did 
during lockdowns, while others kept their behavior constant regardless of the severity of the measures imposed.

Additionally, in order to have insights on the evolution of mobility patterns in time, Fig. 4 depicts the dynam-
ics of the number of people’s commuting over time (Fig. 4a,b) and their travelled distance (Fig. 4c,d), averaged 
across administrative regions. As the raw commuting time series exhibit weekend and holiday-related effects, 
we analyze the 7-day moving average (of both the commuting within administrative regions cWav  and between 
jurisdictions cBav and the relative within travelled distance dWav  and between jurisdictions dBav ) to better identify 
their overall trend, as well as the respective standard deviation ( cWstd , cBstd , dWstd and dBstd ), which highlight differ-
ences in mobility behaviors across administrative regions. These quantities, together with their relative Google 
counterparts, will be used as explanatory variables for assessing the impact of commuting patterns and mobility 
trends on industrial production. We observe a significant reduction of mobility flows between provinces during 
the whole pandemic development, which does rarely touch its pre-crisis levels. The substitution effect involving 
commuting flows within and between provinces is particularly evident during the first nationwide lockdown 
phases, whereas the effect is offset during the summer period, when many restriction measures were lifted, giv-
ing raise to a significant variability in the mobility across administrative regions. After that, the new season of 
policies brought a different effect with respect to the ones adopted during the first wave: a gentler decrease in 

Figure 4.  Line diagrams of the commuting patterns dynamics. The line diagram show the evolution of the 
mobile-phone-based commuting difference ( � Commuters) within (a) and between (b) administrative regions 
with respect to baseline and the average travel distance (km) within (c) and between (d) administrative regions 
in Italy, Spain, France and Germany. In particular, the mobile-phone-based commuting difference is computed 
with respect to a baseline value (the average of the three weeks prior to the lockdowns). Colored solid lines 
represent the real average time series dynamics, black solid lines show the 7-day moving averages, shaded areas 
indicate the 1-standard deviation bands. Administrative regions are at NUTS3 level (province) for Italy, Spain 
and France, while for Germany data are available at NUTS2 level (regional).
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the number of commuters between provinces, but this time together with a drop in the number of commuters 
within provinces. Reading this together with the distance travelled, the first wave policies seem to have impacted 
more strongly people’s mobility than the second ones, although not without some exceptions - see the effects of 
Germany’s Christmas lockdown amid the SARS-CoV-2 surge on overall mobility.

The sequence of policy restrictions and lockdown lifting have also radically changed people’s behavior over 
time. Figure 5 shows the dynamics of human mobility trends for retail and recreation ( rav and rstd ), groceries and 
pharmacies ( gav and gstd ), workplaces ( wav and wstd ) and transit station ( sav and sstd ) in the countries’ adminis-
trative regions. The figure reports an overall slowdown in mobility during the first hard lockdown phase, which 
exhibits variations of even more than 90% with respect to baseline in some cases - see, e.g.  movements to retail 
and recreation sites (Fig. 5a). Given their essential nature, grocery stores and pharmacies (see Fig. 5b) were the 
least affected in terms of number of visitors, although the policy interventions and virus spread pushed people to 
stock up and reach them less frequently than usual, registering drops of around 50% across countries - except for 
Germany. The summer period, when many restriction measures were lifted, shows a reversion of mobility trends. 
Retail and recreation (Fig. 5a) and transit stations (Fig. 5d) were the categories mostly interested by a recovery 
of previous mobility patterns, in most cases turning to values in the neighborhood of normal business periods. 
Not only people tended to move more (e.g. for leisure and vacations), but they also spent more time in shopping 
and recreation activities, giving origin to the so-called “revenge spending” phenomenon, for which wealthy 
individuals emerging from isolation overcompensate by splurging more than they routinely spent before the 
pandemic. Consistently with the dynamic of commuting flows, mobility trends highlight that people’s response 
to policies of the second wave were weaker than those linked to the first hard lockdown. The drop in mobility 
across categories of interest is in most cases much gentler, with the only exception of Germany, which is undoubt-
edly the country suffering the most from the restrictive measures adopted concomitantly with the second wave.

Policy interventions, through the channels of closures and mobility restrictions, exerted an astonishing impact 
on the countries’ economic outputs, which show highly correlated patterns over the pandemic year - see Sup-
plementary Fig. S3, together with Supplementary Tables T1, T2 in SI. The first large contractions in the monthly 
industrial production ( YM ) were registered in March 2020, when the Italian industrial production dropped by 
approximately 28%, followed by the French (17%), the Spanish (13%) and the German (11%) ones. The sharp 
economic downturn continued in the month of April, with all countries witnessing an industrial production 
decline between 20 and 21%, and Italy bearing the harshest consequences of containment policies. From May 
onwards, YM exhibits an extraordinary recovery, bouncing back - despite not homogeneously - nearby their 
pre-crisis levels by the summer period. Industrial production series show then a gradual slowdown in recovery, 
and start again slightly decreasing in November, right after the rise in policy interventions to contrast the second 
wave, except for Germany. Indeed, the German recovery was slower but sustainable over time, in contrast to the 
faster but fleeting Italian one, which led to a significant drop of the industrial production already in September. 
The dynamics of the industrial production is strictly linked to the human mobility figures in each country (see 
Supplementary Fig. S4 in SI). As a matter of fact, industrial production shows large positive correlations both 
with commuting patterns and mobility trends, while it shows a negative correlation of comparable magnitude 
with the mobility within administrative regions, due to the aforementioned substitution effect in commuting 
patterns between to within administrative polygons. This result holds for all countries analyzed.

Mobility data constitute the basis for the day-by-day estimation of the evolution of the industrial production. 
Within this perspective, by leveraging information contained in mobility changes, our aim is to produce a daily 
nowcast of the change in the industrial production rather then to the variable in level. To obtain such estimates, 

Figure 5.  Line diagrams of the Google mobility trends dynamics. The line diagrams show the average dynamic 
of phone-tracking-based changes in mobility patterns of individuals to retail and recreation (a), grocery stores 
and pharmacies (b), workplaces (c) and transit stations (d) across administrative regions in Italy, Spain, France 
and Germany. Colored solid lines represent the real average time series dynamics, black solid lines show the 
7-day moving averages, shaded areas indicate the 1-standard deviation bands. Administrative regions are at 
NUTS2 level (regional) for all the countries under analysis.
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we first take the first difference of all time series so to ensure the stationarity property of our series is met (see 
Supplementary Table T3 in SI). Secondly, we need to specify the factor loading structure. The factor loading 
resolves into a single global factor ( f G ), which affects all variables, and few additional local blocks, which control 
for idiosyncrasies in particular subgroups of series. This choice improves inference, ensuring the model is robust 
to the presence of local correlations. In particular, to model local correlations, we include four additional blocks 
( f AVFB , f STDFB , f AVGOOG and f STDGOOG ). In particular, these blocks refer to the average Facebook mobility values 
( f AVFB ), their standard deviation ( f STDFB ), the average Google mobility values ( f AVGOOG ) and standard devia-
tion ( f STDGOOG ). The specified model is run and updated daily starting from the end of September 2020, while 
parameters are re-estimated at the beginning of each month. The daily updates quantify how each new change 
in mobility patterns contributes to updates in the industrial production nowcasts, while common factors varies 
either if mobility changes or the model parameters are re-estimated.

Before illustrating the daily nowcasts and forecasts of changes in the value of industrial production, we focus 
on the behavior of the common factor dynamic in the European countries under investigation. This step is 
instrumental for assessing the day-by-day change yMt  of the industrial production since the nowcast of yMt  is the 
orthogonal projection of such variable on common  factors42. Figure 6 reports the z-score of the global factors 
( f G ) estimated from the dynamic factor model (solid black) using data up to September. The colored dotted 
lines report the evolution of the factor components related to the average Google mobility trends ( f AVGOOG ), to 
the Google mobility trends standard deviation ( f STDGOOG ), to the average Facebook commuting trends ( f AVFB ) 
and to its standard deviation ( f STDFB ), plotted in standard deviations from their mean. The figure shows that, 
overall, the common factors exhibit high levels of variability during the first and second wave periods, inter-
spersed with a relatively more tranquil dynamics in the summer period. The magnitude of the common factor 
is quite comparable across the four countries, although its evolution is strongly country-specific. In particular, 
we observe a significant decrease of the common factor for Italy at the beginning of the sample meaning that, in 
this particular phase, most of the mobility-related data exhibit large variations leading to its contraction. Moreo-
ver, a similar but gentler pattern is also noticeable during the end of August. Spain shows the least fluctuating 
common factor, especially up to autumn, whereas France displays an oscillating common factor, not only at the 
dates of the introduction or lifting of mobility restriction measures, but also during the summer phase. As far as 
Germany, we observe two distinct regimes: a high volatility from the beginning of the sample until the month 
of June, highlighting a large heterogeneity in human mobility behaviors, and a low volatility afterwards, when 
new behavioral routines of people became more established.

In Fig. 7 we present our out-of-sample nowcasting results for countries’ industrial production change in 
October (Fig. 7a), November (Fig. 7b) and December (Fig. 7c) 2020. Within our framework, the econometric 

Figure 6.  Line diagrams of factor components dynamics. The line diagrams report the in-sample estimates of 
the global common factor component ( f G ), in black, along with the evolution of the factor components related 
to the average Google mobility trends ( f AVGOOG ), to the Google mobility trends standard deviation ( f STDGOOG ), 
to the average Facebook commuting trends ( f AVFB ) and to its standard deviation ( f STDFB ). Moreover, panel (a) 
refers to Italy, (b) shows the dynamics related to Spain, (c) describes the evolution for France and (d) that of 
Germany. For the sake of comparability, the common factor components are expressed in terms of z-scores.
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Figure 7.  Line diagrams and bar-charts of nowcasting and forecasting results. The line diagrams report 
the time series of nowcasts and forecasts of the Industrial Production Index changes for Italy, Spain, France 
and Germany. In particular, panels (a) and (b) show the nowcasting results for the months of October and 
November 2020, respectively, while panel (c) displays the forecasting results for December 2020, for which no 
official data is available yet. Red lines in panels (i) illustrate the dynamics of the daily nowcasts (and forecasts) 
for the change in Industrial Production Index ( yMt  ). Colored bars in panels (ii) represent the contribution 
(Contrib.) of each component according to Eq. 1 to the daily change in the Industrial Production Index in 
relative terms. The news effect is reported as a blue bar while the re-estimate contribution is in pink color. 
Results are obtained by selecting, for each country, the best performing model in terms of mean squared error as 
per the model selection procedure illustrated in Fig. 8.
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model is re-estimated each day with the input of new data, hence variations of a country’s industrial production 
result from the combination of news and model re-estimate effects (see Methods). We therefore illustrate with 
two different bars the contributions of news (blue bar) and model re-estimates (pink bar) to the daily changes 
in industrial production. The red lines show the evolution of our nowcasts for the daily changes in industrial 
production for the months of October and November, as well as the forecasts related to the month of December, 
for which no official figure has been released at the time of writing the present manuscript. Blue dots, instead, 
represent the realized monthly industrial production percentage change with respect to the previous month.

Evidence shows fairly accurate results, as well as that shocks in commuting flows and mobility trends impact 
the dynamics of the industrial production in an heterogeneous way, depending on the country under consid-
eration, and the time span analyzed. On the one hand, we observe that, overall, Spain seems to be the country 
mostly affected by mobility shocks, followed by Germany and France. On the other hand, the dynamics of the 
Italian industrial production is mostly determined by the model re-estimation procedure. In general, news 
deriving from commuting patterns and mobility flows were particularly relevant to the industrial production in 
December, following the entangled restrictive measures in view of Christmas. Empirical outcomes also highlight 
the large intra-month variability of the industrial production dynamics, of which, in general, only the monthly 
level is known by policymakers, and not without any delay. This highlights the importance of our approach as a 
higher-frequency indicator of economic activity during pandemic and emergency times, enhancing government’s 
decision-making processes based on real-time data evidence.

The latter results are obtained by means of the model selection procedure illustrated in Fig. 8. In other words, 
we investigate the predictive performance of several model specifications and select the variables’ schemes 
yielding to the best fit in terms of mean squared error (MSE). Particularly, we examine 24 different model con-
figurations by considering either the Facebook mobility data or the Google ones or both, either 1, 3 or 5 com-
mon factors, the number of lagged predictors from 1 to 3, the model with or without the corresponding time 
series standard deviations. In Supplementary Table T3 we report the models ID as indicated in Fig. 8 together 
with the corresponding explanatory variables inserted into the model and the specification of the number of 
lags and common factor structures. Evidence shows that results are sensitive to the model specification chosen, 
thus raising the need to perform a model selection procedure to ensure the best fitting possible. In particular, 

a b

c d

Figure 8.  Spider-plots of the model selection results. The figure shows the spider-plots of the values of the mean 
squared error (MSE) for different types of model configurations, across the four countries. (a) shows the MSEs 
of the models with either Facebook (FB) or Google (GOOG) average mobility data and varying number of lags 
of the predictors from 1 to 3. (b) illustrates the MSEs of the models obtained by including both dataset with 
either 1 or 3 factors and different number of lags of the predictors from 1 to 3. (c) shows the MSEs of the models 
with either 1 or 3 factors including the time series standard deviations and different number of lags of the 
predictors from 1 to 3. Finally, (d) shows the MSEs of the models with either 3 or 5 factors including the time 
series standard deviations and different number of lags of the predictors from 1 to 3.
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the best fitting model for France encompasses only Google variables with a common global factor and one lag. 
For Italy the lowest MSE is obtained by exploiting information of both type of data (FB and GOOG) with three 
common factors ( f G , f FB and f GOOG ) and three lags. Nowcasts and forecast for the German industrial produc-
tion reported in Fig. 7 are obtained inserting both the averages and the standard deviations of Facebook and 
Google variables as for Spain.

Conclusion
A key challenge at the center of political debates in the midst of the pandemic is to which extent health outcomes 
should be balanced against the economic sacrifices coming with lockdowns and restrictive measures. While 
some argue that saving lives must take precedence over economic goals, many others insist that priority should 
be given to preserving the economy. However, due to the unavailability of timely and robust real-time economic 
data, most policy decisions undertaken by governments so far were solely based on data about the evolution of 
the epidemics, without knowing the actual magnitude of economic losses such decisions may cause.

Against this background, real human mobility data can be of extreme relevance not only to track the evolu-
tion of the epidemics, but also to monitor the contraction of economic activity due to policy restrictions over 
time. Thus, we introduce a nowcasting framework which leverages a set of real-time human mobility indicators 
with the aim of timely monitoring economic activity, as measured by the industrial production of a country, on 
a day-by-day basis. Our approach takes root from the dynamic factor model, a state-of-the-art technique from 
the statistical domain which allows us to derive an early real-time estimate for the economic activity before the 
official figure is released.

Our results provide evidence of a large variability of daily economic activity, as well as on country-specific 
features of economic dynamics, which can be captured by variations in different dimensions of human mobility. 
This emphasizes the role of our nowcasting method as a timely monitor of economic activity amid the pandemic 
period, given its ability to quantify the economic downturns and recoveries due to the imposition and lifting 
of the complex variety of policy restrictions adopted by worldwide governments. The combination of real-time 
representations of a country’s health and economic conditions given by epidemiological and economic models 
enable policymakers to promptly tune their decisions, based upon the interplay between health and economic 
damages generated by their policy decisions.

Despite the merits of our approach to unveil the nexus between mobility variables and industrial produc-
tion during the pandemic phase, we acknowledge the limitations of the proposed methodology. First, although 
mobility can be considered a good predictor for industrial production and, therefore, for economic activity, this 
relationship is informationally stronger with worsening conditions of the pandemic and consequent closures. 
The potential use of several additional business and economic predictors of the industrial production can tackle 
the issue of nowcasting beyond hard SARS-CoV-2 phases, although the scarcity of high-frequency economic 
data raises the need to seek for other variables which might well capture the dynamics of economic indices on 
a real-time basis. The lack of data is also source of low-granularity of the nowcasting results, as the presence of 
regional or county-level economic time series data, combined with data on human mobility at an administrative 
level, would enable a more granular representation of a country’s economic activity.

Methods
The nowcasting framework. Our real-time monitoring approach is grounded on the nowcasting meth-
odology, a technique previously employed in meteorology, defining the prediction of the present, the very near 
future and the very recent  past41. This approach is relevant when key statistics on the present state of the econ-
omy are available with a significant delay and with a low  frequency42, i.e. at a monthly or quarterly frequency.

In order to estimate the day-by-day impact that mobility variation exerts on industrial production, we exploit 
the fact that these data series co-move quite strongly with mobility patterns during the pandemic period, so that 
their behaviour can be captured by few latent factors. In particular, by means of the dynamic factor  model40, we 
assume that the information of both mobility patterns and of industrial production - despite being released with 
different time frequency, i.e. “high” and “low” frequency - can be described by employing a number of latent 
factors which follow a time series autoregressive process. An important motivation for considering dynamic fac-
tor models is that, by knowing the dynamics of latent factors, one can make efficient forecasts for an individual 
variable through the projections of that variable on the lagged factors. Dynamic factor models have the twin 
appeals of being grounded in dynamic macroeconomic theory and providing a good first-order description of 
empirical macroeconomic data, in the sense that a small number of factors explain a large fraction of the vari-
ance of many macroeconomic  series49.

Casting the model in a state space framework allows us to build a formalisation on how market participants 
read data releases in real time, which involves: monitoring many data, forming expectations about them and 
revising the assessment on the state of the economy whenever realizations diverge sizeably from those expecta-
tions. This is possible because, for a model in a state space representation, the Kalman  filter50 generates projections 
for all the variables considered and therefore allows to compute, for each data release, a model-based surprise, 
i.e. the “news”. Further, nowcast revisions can be expressed as a weighted average of these  news41. When a value 
is missing, the Kalman filter replaces the missing value with an estimate and, together with a smoother, one can 
cope with mixed frequency data series. This feature enables the model to easily handle missing data points and 
gradually improve the measure of economic activity in a particular month, as new data is released. The model 
computes a joint forecast of predictors and target series at each release, along with the surprise component of 
the published data release, which represents the “news” effect. The revision of the nowcast for a low frequency 
variable can then be described as the product of the weight of each series, estimated on historical data, and the 
news component at each data release.
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Let us now denote �v the information set at time v containing the values assumed by mobility predictors 
and industrial production up to time v. The nowcasting of yMt  , i.e. the daily change of industrial production, 
consists of the orthogonal projection of yMt  on �v given the set of parameter estimates θ42. Under the assump-
tion that the data generating process is given by Eq. (8) in Methods, with θ equal to its quasi-maximum likeli-
hood estimate, the Kalman filter and smoother can be used to obtain in an efficient and automatic manner this 
projection for any pattern of data available in �v . Another important feature of the nowcasting process is that a 
sequence of nowcasts is updated as new data are fed into the model. In other words, we perform a sequence of 
projections [yMt |�v] , [yMt |�v+1], . . . , . Nowcast updates are generally influenced by the model’s forecast errors 
corresponding to each data release and the effects of parameters re-estimation. Suppose at time v + 1 new data are 
released, xj,v+1, j ∈ Jv+1 , where j is the variable for which data are released and J  the set of data released, then 
�v ⊂ �v+1 and �v \�v+1 = xj,v+1, j ∈ Jv+1 . The nowcast update is given by a revision effect plus a parameter 
re-estimation effect:

The nowcast revision is a weighted sum of the news associated with the data release for each variable, while the 
effect of re-estimation is the difference between the nowcast obtained using the old information set,�v , and the 
old parameter estimates, θv , and the nowcast using the old information set, �v , and the new parameter estimates, 
θv+1.

The dynamic factor model. Dynamic factor models (DFMs) are a class of statistical models for multivari-
ate time series analysis in which the observed endogenous variables are linear functions of some unobserved 
factors, which have a vector autoregressive structure. The unobserved factors instead are a function of exogenous 
covariates. Dynamic-factor models can be seen as a dimension reduction technique which is nowadays com-
monly used by public and private institutions as central banks and investment banks for analysing large panels of 
time series. In our specific case, industrial production is driven by few factors representing mobility dimensions 
plus some measurement errors. The premise of a dynamic factor model is that a set of latent dynamic factors 
drive the co-movements of a high-dimensional vector of time-series variables, which is also affected by a vector 
of zero-mean idiosyncratic disturbances.

We start by characterizing the dynamics for the daily variables. Let xt = (cBk,t , c
W
k,t , d

B
k,t , d

W
k,t , gk,t , rk,t , sk,t ,wk,t)

′ 
denote the vector of (stationary) daily variables of mobility data derived from Facebook and Google, with the 
indicator t = {1, . . . ,T} being the index variable representing time and k = (av, std) , where av denotes the 
sample average and std the sample standard deviation. We assume that xt obeys the following factor model 
representation:

where ft is a r × 1 vector of (unobserved) common factors, Ŵ is a n× r matrix of factor loadings and ǫt is a vector 
of idiosyncratic components, and µ is a vector of unconditional means. Further, the factors f are modelled as a 
Vector Autoregressive (VAR) process of order p:

where A1, . . . ,Ap are r × r matrices of autoregressive coefficients and ut ∼ i.i.d.N (0,Q) is an independent and 
identically distributed term with zero mean and variance Q. Also the dynamics of the idiosyncratic component 
of daily variables ǫt follows an AR(1) process:

with (ei,t , ej,s) = 0 , for i  = j indicating the absence of correlation between the ith and the jth error components 
at time t and s, respectively.

To account for the local cross-sectional correlation within the variables of the two differ-
ent datasets, which is helpful for a more efficient extraction of the global factor, we further par-
tition ft  into a global factor f G and mutually independent specific variable factors f k , with 
k = {AVFB, STDFB,AVGOOG , STDGOOG ,AVFB, STDFB,AVGOOG , STDGOOG} (hereafter, we suppress superscripts 
for sake of readability).

With the aim of including the low frequency economic variables, we express the monthly industrial pro-
duction variable in terms of its partially-observed daily  counterpart51. We assume that the unobserved daily 
growth rate of industrial production yt = �YD

t  admits the same factor model representation as the monthly 
real variables:

with ŴM =
(
ŴM,G 0 0

)
 and eMt ∼ i.i.d.N (0, σ 2

M) . Where the symbol 0 represents a scalar which indicates the 
absence of dependence between the unobserved daily growth rate of industrial production and mobility specific 
factors and eMt  is an independent and identically distributed term with zero mean and variance σ 2

M . To link yt 
with the observed industrial production we build a partially observed daily time series:

(1)
(yMt |�v+1, θv+1)︸ ︷︷ ︸

Update Nowcast

= (yMt |�v , θv)︸ ︷︷ ︸
Old Nowcast

+ (yMt |�v , θv+1)︸ ︷︷ ︸
Parameters Re-estimation

+
∑

j∈Jv+1

δj,t,v+1[xj,v+1 − (xj,v+1|�v)]

︸ ︷︷ ︸
News Impact

(2)xt = µ+ Ŵft + ǫt

(3)ft = A1ft−1 + · · · + Apft−p + ut

(4)ǫi,t = αiǫi,t−1 + ei,t

(5)
yt = µM + ŴMft + ǫ

M
t

ǫ
M
t = αǫ

M
t−1 + eMt
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where YM is the industrial production in levels and ỹMt  represents a missing observation. Here we approximate 
each month with 30 days  length51.

with t = 30, 60, 90, . . . . For estimating the DFM we cast the Eqs. (2)–(7) in a state space representation. Let 
x̂ = (xt′ , y

M ′

t ) and µ̂ = (µ
′,µ′

M) state space representation results in:

with ηt ∼ i.i.d.N (0,�2
η
(θ)) where the vector of states includes the common factors and the idiosyncratic com-

ponents and all model parameters are collected in θ . The details of the state space representation are provided in 
SI. We estimate θ by maximum likelihood implemented by the Expectation Maximisation (EM)  algorithm52–54. 
Maximum likelihood allows us to easily deal with such features of the model as substantial fraction of missing 
data. Given an estimate of θ , the nowcasts as well as the estimates of the factors or of any missing observations 
in x̂t , can be obtained from the Kalman filter or smoother. Details about the model state space representation of 
the EM algorithm are contained in SI.

Data description. Population commuting patterns. We analyzed data based on the “Coronavirus Disease 
Prevention Maps” made available by Facebook as a part of its “Data For Good” program, a collection of unique 
dynamic spatial-temporal datasets illustrating worldwide populations commuting patterns over the COVID-19 
pandemic period. The maps use anonymized and aggregated data on mobile-phone-based geo-localized move-
ments of people having their geo-positioning option enabled across country administrative polygons within 
time intervals of 8 hours, which we aggregate to daily frequency. We collected data relative to commuting pat-
terns in Italy, Spain, France and Germany until 7 January 2021, with different starting points in 2020 depending 
on the availability of Facebook Coronavirus Disease Prevention Maps (Italy: 24 February; Spain: 12 March; 
France: 5 March; Germany: 25 March).

Human mobility trends. Google has recently disclosed its Community Mobility Reports, an unprecedented 
phone-tracking based source of mobility data which aggregates anonymized information from users who have 
turned on their location history setting. In particular, data outline daily changes in mobility of a bunch of geog-
raphies across location categories, including retail and recreation, grocery stores and pharmacies, workplaces 
and transit stations, tracking people’s change in movement trends throughout the pandemic. The baseline value 
represents the median values on a five-week period from 3 January 2020 to 6 February 2020, constituting a 
“normal” business period, taking also into account for the different behavior routines on weekdays rather than 
weekends. We collected data about mobility trends at administrative regional level of Italy, Spain, France and 
Germany from 15 February 2020 to 7 January 2021.

Both Facebook and Google do not share data with personal identifying information such as a person’s loca-
tion, contacts or travel. Indeed, their reports are based on aggregated and anonymized datasets of users who 
have the “Location History” setting turned on.

Real economy. We have analyzed as indicator of real economic activity the monthly time series of the Organisa-
tion for Economic Co-operation and Development (OECD) Industrial Production Index of Italy, Spain, France 
and Germany over the period ranging from March to November 2020. Industrial production refers to the output 
of industrial establishments and covers sectors such as mining, manufacturing, electricity, gas and steam and 
air-conditioning. It is amongst the most widely employed and monitored macroeconomic indicators, given its 
ability to represent a country’s economic activity in terms of industrial output, regardless of price changes. The 
indicator is measured against a reference period (100=2015) that expresses change in the volume of production 
output with respect to the baseline value.

Government policy actions. The Oxford COVID-19 Government Response Tracker (OxCGRT) collects pub-
licly available information on 19 indicators of government responses. Eight of the policy indicators (C1-C8) 
record information on containment and closure policies, such as school closures and restrictions in movement. 
Four of the indicators (E1-E4) record economic policies, such as income support to citizens or provision of for-
eign aid. Seven of the indicators (H1-H7) record health system policies such as the COVID-19 testing regime, 
emergency investments into healthcare and, most recently, vaccination  policies55.

Data availability
Facebook human mobility data are provided under an academic license agreement with Facebook in the context 
of the “Facebook Data for Good” program, through which data are released by Facebook upon request to non-
profit organizations and academics - see https:// dataf orgood. fb. com/ tools/ disea se- preve ntion- maps/. Google 
human mobility data are publicly available through the “Google Mobility Reports” program at https:// www. 
google. com/ covid 19/ mobil ity/. Policy data are publicly available and provided by the University of Oxford in 
co-operation with the Blavatnik School of Government through the “Oxford COVID-19 Government Response 

(6)yMt =

{
YM
t − YM

t−30, if t = 30, 60, . . .

ỹMt , otherwise

(7)yMt = yt + 2yt−1 + · · · + 29yt−28 + 30yt−29 + 29yt−30 + · · · + yt−60

(8)
x̂t = µ̂+ Z(θ)αt

αt = T(θ)αt−1 + ηt

https://dataforgood.fb.com/tools/disease-prevention-maps/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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Tracker” at https:// www. bsg. ox. ac. uk/ resea rch/ resea rch- proje cts/ covid- 19- gover nment- respo nse- track er. Real 
economy data are publicly available and provided by the OECD at https:// stats. oecd. org/.
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