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Abstract
Inferring mobile phone users’ home location, i.e., assigning a location in space to a
user based on data generated by the mobile phone network, is a central task in
leveraging mobile phone data to study social and urban phenomena. Despite its
widespread use, home detection relies on assumptions that are difficult to check
without ground truth, i.e., where the individual who owns the device resides. In this
paper, we present a dataset that comprises the mobile phone activity of sixty-five
participants for whom the geographical coordinates of their residence location are
known. The mobile phone activity refers to Call Detail Records (CDRs), eXtended
Detail Records (XDRs), and Control Plane Records (CPRs), which vary in their temporal
granularity and differ in the data generation mechanism. We provide an
unprecedented evaluation of the accuracy of home detection algorithms and
quantify the amount of data needed for each stream to carry out successful home
detection for each stream. Our work is useful for researchers and practitioners to
minimize data requests and maximize the accuracy of the home antenna location.

Keywords: Mobile phone data; Data science; Human mobility; Home location
detection

1 Introduction
Nowadays, there is a strong demand by all branches of government, including national sta-
tistical offices, to invest in projects that explore how we can integrate novel digital data into
all kinds of official statistics (e.g., mobility, immigration, epidemic control). This is brought
about by the need to reduce costs and increase timeliness of data collection, potentially
providing faster data-driven decisions to sophisticated societal problems [20, 41, 42]. In
particular, in recent years, we have witnessed the emergence of methodologies that use
heterogeneous digital data sources - such as social media data, GPS traces or mobile phone
records - to estimate socio-economic indicators of objective and subjective well-being
[11, 14, 16, 22, 25–27, 31, 36, 39, 45].

The many applications of “big data” analytics to any kind of official statistics depend
critically on our ability to identify, with more or less error, where someone lives, i.e., de-
tecting an individual’s home location. This impacts all aspects of the work on statistics
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with non-traditional data sources such as the estimation of population density [10, 18, 38],
commuting and migration flows [5, 15, 17, 19, 28], air pollution [21, 37], and the estima-
tion of privacy risk [8, 9, 12, 32, 33], and is of special importance now to inform epidemic
models of COVID-19 transmission [34]. The knowledge of the home location of individ-
uals forms the crucial link between digital data and census data, making it a key enabler
for the integration of these two sources of information.

Most of the home detection algorithms (HDAs) proposed in the literature [1, 13, 43,
44] process mobile phone records according to ad-hoc heuristics rather than principled
approaches. Indeed, they rely on simple decision rules based on how much, and when, an
individual calls in each location during the period of observation. The simplest category of
HDAs identifies an individual’s home location as the one in which they made the highest
number of calls. A variant of this algorithm identifies an individual’s home location as
the one in which they make the highest number of calls during nighttime (e.g., between 7
pm and 7 am). Other HDAs use a combination of criteria or slight variations of the ones
mentioned above [43, 44]. Although these algorithms have been used in many works and
tools [6, 7, 11, 24, 29–31, 35, 46], a thorough validation of their accuracy is still missing.

One reason for this is that, with few exceptions [1, 13], ground truth data at the indi-
vidual level are not provided by mobile providers for privacy protection reasons, mak-
ing it difficult to obtain a large enough sample of users for which complete information
about positions and residence are available at the same time. For example, Vanhoof et al.
[43, 44] provide a high-level validation of the most popular HDAs by comparing each mo-
bile phone tower’s population as estimated by official censuses with the number of users
whose home is detected to be in that tower. They conclude that there is an urgent need for
validation of HDAs at the individual level, i.e., evaluating the performance in detecting the
home location on a set of individuals for which the actual home location is known [43, 44].

It’s important to notice, also, that HDAs have been validated mostly on Call Detail
Records (CDRs) [4, 23], which describe each user’s position only when they make or re-
ceive a call. Since the inter-event time between two calls is bursty [40], CDRs are sparse
and provide an incomplete picture of an individual’s positions over time [2], and it has be-
come more so in recent years, since calls have decreased noticeably, and communication
apps (e.g., Whatsapp, Zoom, Telegram, Discord) have increased. It is not clear, however,
whether eXtended Detail Records (XDRs), which are generated partly by the individual
and partly by the phone device (thus indirectly accounting for the above mentioned apps),
or Control Plane Records (CPRs), which are purely triggered by the mobile phone network,
overcome the limitations of using the more temporally sparse CDRs, providing more ac-
curate estimates of an individual’s home location.

This paper provides an attempt at a fine-grained validation of HDAs on individual-level
ground truth data and three streams of mobile phone records – CDRs, XDRs, and CPRs.
Specifically, 65 users working for Telefónica Chile gave their written consent to provide us
access to their phone records for two weeks, as well as their actual address of residence.
This information allowed us to correctly assess the accuracy of HDAs, i.e., their capacity
to detect a user’s actual home correctly, on a ground truth dataset. Our validation reveals
the most accurate HDA among the popular ones proposed in the literature, and that XDRs
and CPRs improve the accuracy of HDAs considerably with respect to CDRs. Moreover,
we set up a data minimization experiment to study how the accuracy of detecting home
locations changes by the stream used and the number of records for each user. We find
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that, depending on the stream, just a small fraction of the records is enough to achieve
reasonably accurate estimations of an individual’s home location, hence providing a tool
to manage the uncertainty and utility trade-off in geo-privacy.

We believe our individual-level validation is a useful and timely contribution to the field,
which paves the road towards the definition of more accurate home detection algorithms,
and a much needed standardized method for home detection that could make studies
more comparable.

2 Mobile phone datasets
We obtained written consent from 65 people working for Telefónica Chile to use the pre-
cise latitude and longitude of their homes in Santiago de Chile, calculated over the original
addresses (e.g., 123 Santiago Street, Providencia) with reverse lookup using Google Maps.
We also obtained consent to gather two weeks (14 days, September 24-October 6, 2019
inclusive) of their historical mobile phone records for three streams: Call Detail Records
(CDRs), eXtended Detail Records (XDRs), and Control Plane Records (CPRs). For pri-
vacy purposes, no other demographic information was either requested nor volunteered.
It is worth mentioning that this is not a dataset of participants in a controlled study (we
did not give them phones, or SIM cards, for example). Instead, it is a rather uncontrolled
sample of Telefónica employees (among thousands of employees), who consented to have
the two weeks of their telco records accessed for research purposes, and linked to their
residence address. As consent was obtained for accessing past records, the mobile phone
traces comprising our dataset are, at least in this dimension, more “ecologically valid”, as
opposed to the more common experimental setting in which participants know they will
be monitored over a future time interval.

Mobile phone operators collect CDRs and XDRs for billing and operational purposes.
CDRs are purely user-triggered, i.e., they are generated by the users every time they make
or receive a phone call. Consequently, when a user does not make/receive a call, their posi-
tion is not recorded. XDRs are a mixture of human- and device-triggered, either by explic-
itly requesting an http address or automatically downloading content from the Internet
(e.g., emails). In contrast, CPRs are network-triggered (e.g., assigning a new antenna, con-
necting new devices) and are used to monitor the cellphone network status. Although all
three streams are equal in terms of their geo-location properties (the set of towers remains
more or less constant in time), they vary significantly in their time granularity and data
sparsity. Figure 1 shows an illustrative example of CDRs, XDRs, and CPRs of an individ-
ual, and how the most frequented tower changes stream by stream. At the Telco level,
there was no aggregation of any time-event associated to any of the streams. The only
pre-processing step was the pseudo-anonymization of the phone numbers (i.e., the phone
numbers were hashed).

Formally, a CDR is a tuple (no, ni, t, d, Ao, Ai), where no and ni are the identifier of the user
that places the call (the caller) and the one that receives the call (the callee), respectively; t
is a timestamp of when the call was placed and d is the call’s duration (in minutes). Ao and
Ai are the antennas for the outgoing call (where the call is placed) and the receiving call
(where the call is picked up), respectively. Our dataset contains 1663 antennas (Fig. 2),
which may be a tower (containing many antennas), or a single antenna, as for example
in indoor spaces [3]. An antenna is a tuple A = (lx, ly) where lx, and ly are the longitude
and latitude of A. For simplicity, from now on we always use the term “tower” to denote a
location.
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Figure 1 Illustrative example of Call Detail Records (CDRs), eXtended Detail Records (XDRs) and Control Plane
Records (CPRs) of a user u. The hexagons represent mobile phone towers and black dots the positions where
the user starts a call (CDRs), a download/upload operation (XDRs), or a network event (CPRs). Red dots
indicate calls, green dots indicate download/upload operations, blue dots, green squares and green triangles
indicate network events. The dotted line indicates the real movement of the user, from the left to the right,
within each panel. The dark grey tower indicates the tower in which the user has the highest number of
records. From this example, we observe that: 1) CDRs are the most sparse and CPRs the most dense data
stream; 2) when u does not perform any call or download/upload operation in the area covered by a tower,
there is no information about the user’s position in CDRs and XDRs; 3) CPRs is the only type of records that can
describe all the towers u passed through

Figure 2 Position of antennas (black dots) and presence of our 65 users in the largest urban area of Santiago
de Chile. Antennas cluster in regions with more demand, and become sparser in regions with less demand.
The noticeable line of antennas in the middle of the map are those that fall in the wealthier/financial
comunas (a large administrative unit, represented in our map with black lines)

An XDR is a tuple (n, t, A, k); in contrast to CDRs, there is only one antenna A involved, n
is the caller’s identifier, t is a timestamp of when the record is created and k is the amount
of downloaded information (in kilobytes). Finally, a CPR is a tuple (n, t, A, e), where each
e ∈ E is an “event” of the network. There are many possible control plane events, such
as “handovers” (when a new antenna is pushed on the device), the “(re-)activation” of a
phone, etc.

For the period under investigation, we have 19,234 CDRs, 43,607 XDRs and 772,871
CPRs. Figure 3a compares the number of records in our dataset of the three streams. For
CPRs, October 5 is missing (see Fig. 3), and there are 13 days only. CPRs are the most
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Figure 3 A comparison of the number of (a) records and (b) unique users for CDRs, XDRs and CPRs, for 14
days (except Oct 5 for CPRs, for which there was no data ingestion)

frequent ones (i.e., most records per user), followed by XDRs and CDRs. CDRs are also
the data type with the highest variance across the days of the week. Figure 3b shows, per
each stream, the number of active users (those with at least one record) per hour. Again,
CPRs show the highest number of active users, followed by XDRs and CDRs. Note also
that CPRs have the lowest variance between the week’s days, while CDRs have the highest
variance.

From the CDRs, XDRs, and CPRs, we compute the activity of each user in each tower
according to 37 home detection algorithms (HDAs, see Sect. 3). Tables 1 and 2 show the
structure of the aggregated data.

In theActivity dataset, each row describes the activity a user has in a tower according
to a data stream and an HDA. Column “device” indicates the (anonymized) device iden-
tifier. Column “tower” indicates the (hashed) identifier of a mobile phone tower. Column
“activity” indicates the amount of activity the user has in the tower. Column “stream” indi-
cates the type of records (CDRs, XDRs, or CPRs) and column “HDA” the home detection
algorithm that calculated the activity. Given a stream T , a user u, and an HDA X, the row
with the highest “activity” value is the home detected by X on T for u. For example, in
Table 1, for user afa64, tower 0052 is the most active one according to HDA MA (Most
Amount) using CDRs.
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Table 1 Structure of the activity dataset. The records are sorted by device, stream, HDA, and activity

device tower activity stream HDA

afa64 0052 5 CDRs MA
afa64 0056 3 CDRs MA
afa64 0012 1 CDRs MA
afa64 0052 2 CDRs DD
afa64 0056 1 CDRs DD
. . . . . . . . . . . . . . .

Table 2 Structure of the ground truth dataset. Each record describes a device and the three closest
towers to the device owner’s actual home location

device closest 2nd closest 3rd closest

afa64 0003 0087 0043
214ab 0022 0043 0011
1c75db 0065 0022 0021
f1599 0087 0076 0055
d666d 0003 0009 0087
. . . . . . . . . . . .

For XDRs and DD, the same column indicates the number of distinct days the user has
at least one XDR for that tower. Table 1 shows some examples of records corresponding
to a single user. In total, the Activity dataset contains 555,771 rows.

In theGround truth dataset, each row describes a mobile phone device and the iden-
tifiers of the three closest towers to the user’s actual home location. Column “device” indi-
cates the (anonymized) device identifier. Columns “closest”, “2nd closest”, and “3rd closest”
indicate the identifiers of the towers that are, respectively, the closest tower, the second
closest tower and the third closest tower to the user’s actual home location. These towers
are identified using a k-nearest neighbor algorithm, with k = 3. Table 2 shows some exam-
ples of ground truth records. In total, we have 65 rows in the Ground truth dataset.

3 Results
We use the Activity dataset to detect the 65 users’ home locations according to a set
of HDAs and use the Ground truth dataset to assess the HDAs’ accuracy. Specifically,
we extend the set of HDAs defined for mobile phone data by Vanhoof et al. [43, 44]. For
every stream - CDRs, XDRs, and CPRs - and for every user u, we calculate the most active
towers given the specific criteria of each HDA.

Algorithm MA (“Most Amount”, we follow Vanhoof ’s [43, 44] naming conventions here)
counts the number of records at every tower for u. The tower with the highest activity is
u’s home location. We consider two variants of this algorithm, which count the number of
records at every tower during weekdays (MA-WK) and weekend days (MA-WE). Moreover,
we consider an extension of MA that implements a spatial perimeter of 1 km around each
tower (MA-R). The activity of a tower x is hence the sum of the activities of all towers within
a radius of 1 km, including x.

AlgorithmDD (Distinct Days) calculates the activity of towers for every unique day. Thus,
wherever u is on most distinct days is identified as their home.

The algorithms based on the Time Constraints criterion (TC) calculates the most active
towers during a specific time period. For example, Algorithm TC-19-9 counts the num-
ber of records at every tower between 7 pm and 9 am, inclusive. The tower that is most
active during this period at night is identified as u’s home location. Clearly, many possible
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time periods may be specified during nighttime or daytime, which would lead to different
variants of the TC algorithm. In our study, we consider eight time periods, four in night-
time (19-7, 19-9, 21-7, 21-9) and four in daytime (9-21, 9-19, 7-19, 7-21). Since the choice
of the time period does not affect the results significantly, and for the sake of clarity, we
present results for one period in nighttime (19-7) and on period in daytime (7-19) only,
leaving the presentation of the results for all time periods in the Supplementary Mate-
rial 1. It is important to notice that TC-WK-7-19 acts as a kind of “counterfactual”, since
it is hard for people who work during regular business hours to be home during those
times. Effectively, this is what happens, with TC-WK-7-19 consistently ranking as one of
the worst HDAs (as we will show in Sect. 3.2), showing that HDAs are sensitive in these
dimensions. This of course introduces a limitation of the current study; namely, the iden-
tification of home locations for people who work during nighttime. We discuss this briefly
in the conclusions.

For each time period, we consider two further variants of TC, which consider records
during weekdays (from Monday to Friday, TC-WK) and weekend days (Saturday and Sun-
day, TC-WE). This choice is motivated by the fact that call patterns are expected to change
over the weekends, when users are not at work during daytime. Finally, for each time and
week period, we consider an extension of TC that implements a spatial perimeter of 1 km
around each tower, similarly to MA-R. Table 3 lists the HDAs we consider in our study.

In the case of ties between the towers with the highest activity according to a certain
HDA, we select the tower with the minimum collective activity, i.e., the sum of the activity
of all users in that tower. If the towers have the same collective activity, we select a tower
at random. We find that HDAs implementing a spatial perimeter of 1 km (e.g., MA-R, TC-
R-19-7) generate the highest number of ties, and that CPRs and XDRs are more resilient
to ties than CDRs (see Supplementary Information 1).

3.1 Agreement between HDAs
We first investigate whether, for the same user, different HDAs detect the same home
location, and how the choice of the stream influences the agreement between algorithms.
Given a stream T ∈ {CDRs, XDRs, CPRs}, we assess to which degree two HDAs X and Y
agree on a set of individuals G by evaluating the Simple Matching Coefficient (SMC) [44],
defined as:

SMCT (X, Y ) = 100 ∗
∑|G|

i=u δ(HX,T (u), HY ,T (u))
N

, (1)

where u = 1 . . . |G| denotes the 65 users in our dataset, HX,T (u) and HY ,T (u) denote the
home location detected for user u on stream T by HDAs X and Y respectively, and δ is
the Kronecker delta which is equal to 1 when HX,T (u) = HY ,T (u). The Kronecker delta is
0 otherwise. Values of SMC thus range between 0 and 100 and can be interpreted as the
percentage of individual cases for which both algorithms detected the same home location,
i.e., the agreement between two HDAs.

Figure 4 shows the average SMC of the home detection algorithms (HDAs). Specifically,
in Fig. 4a, c, e, we compare the HDAs that consider the number of records during night-
time, daytime, or all day. We find that the average agreement between the HDAs is highest
for XDRs (44.37%), and lowest for CDRs (35.25%). Moreover, for XDRs and CPRs, TC-19-
7, based on nighttime records, is the HDA with the highest average SMC, while it is MA for
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Table 3 Characterization of the considered HDAs according to their criterion, week period, day
period, and space radius

name criterion week period day period radius description (home is tower where)

MA Maximum Amount all week all day - most activities occurred
MA-WK Maximum Amount weekdays all day - most activities occurred during

weekdays
MA-WE Maximum Amount weekend days all day - most activities occurred during

weekend days
MA-R Maximum Amount all week all day 1 km most activities occurred in that

tower and all towers within 1 km
radius to it

DD Distinct Days all week all day - maximum active days were
observed

TC-19-7 Time Constraints all week nighttime - most activities occurred between 7
pm and 7 am (nighttime)

TC-7-19 Time Constraints all week daytime - most activities occurred between 7
am and 7 pm (daytime)

TC-WK-19-7 Time constraints weekdays nighttime - most activities occurred between 7
pm and 7 am (nighttime) and
during weekdays

TC-WE-19-7 Time constraints weekend days nighttime - most activities occurred between 7
pm and 7 am (nighttime) and
during weekend days

TC-WK-7-19 Time constraints weekdays daytime - most activities occurred between 7
am and 7 pm (daytime) and during
weekdays

TC-WE-7-19 Time constraints weekend days daytime - most activities occurred between 7
am and 7 pm (daytime) and during
weekend days

TC-R-19-7 Time constraints all week nighttime 1 km most activities occurred between 7
pm and 7 am (nighttime) in all
towers within 1 km

TC-R-7-19 Time constraints all week daytime 1 km most activities occurred between 7
am and 7 pm (daytime) in all
towers within 1 km

CDRs. Figure 4b, d, f shows the SMC between each pair of HDAs. HDAs based on radius
(MA-R, TC-R-19-7, and TC-R-7-19) constitutes a separate group and achieve the lowest
average SMC. Moreover, the HDAs based on nighttime records and on all-day records
tend to have a higher average SMC than those based on daytime records. This agrees with
the intuition that users in our sample will be working during day time, and at home during
nighttime.

These results provide important practical insights. First, XDRs should be preferred
when performing home location detection: since they lead to the highest agreement be-
tween HDAs, the use of XDRs would guarantee a higher reproducibility of the results.
Unfortunately, most of the works in the literature use CDRs, and with different HDAs.
Second, for XDRs, the average agreement is about 44%. This means that in more than
half of the cases the HDAs disagree on what the home location of a user should be, high-
lighting that the choice of the HDA is crucial. The best solution would be to select the
combination of HDA and stream that, on average, gives the most accurate home loca-
tion detection. Therefore, what is the most accurate combination of HDA and stream on
individual ground truth data?
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Figure 4 (a), (b), (e) The SMC of each pair of HDAs, for each stream. The black dashed line indicates the
average SMC of a stream. (b), (d), (f) SMC between each pair of HDAs (elements of the matrix), for each stream.
Each element of the matrix indicates the SMC between the two HDAs

3.2 Accuracy of HDAs
For each user u ∈ G, where G is the set of the 65 users, we know the address of residence,
from which we obtain the exact position (e.g., latitude and longitude) of their actual home
location H (u) using Google Maps. Note that the closest tower is not necessarily the one that
serves a user at home. Indeed, in some areas of the city where the density of towers is high
(e.g., close to downtown), some antennas are turned off by the operator at different times
of the day, or they become so heavily used that the network re-routs some users. Moreover,
a user may have a tower close to their home, but with the azimuth of the antenna pointing
to the opposite direction, while a tower farther away may be directly “illuminating” the
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Table 4 Accuracy of each combination of HDA and stream

three nearest towers nearest tower

CDRs XDRs CPRs CDRs XDRs CPRs

DD 0.40 0.66 0.63 0.22 0.40 0.35
MA 0.26 0.57 0.49 0.15 0.34 0.25
MA-R 0.31 0.38 0.35 0.15 0.20 0.09
MA-WE 0.51 0.62 0.54 0.25 0.35 0.28
MA-WK 0.22 0.52 0.48 0.12 0.31 0.25
TC-19-7 0.42 0.68 0.65 0.25 0.43 0.40
TC-7-19 0.22 0.31 0.34 0.12 0.18 0.17
TC-R-19-7 0.31 0.43 0.38 0.11 0.22 0.11
TC-R-7-19 0.29 0.32 0.28 0.14 0.15 0.12
TC-WE-19-7 0.42 0.60 0.54 0.20 0.34 0.32
TC-WE-7-19 0.40 0.58 0.58 0.25 0.34 0.31
TC-WK-19-7 0.37 0.69 0.66 0.23 0.45 0.42
TC-WK-7-19 0.17 0.15 0.23 0.09 0.09 0.11

avg 0.33 0.50 0.47 0.18 0.29 0.24

user’s home. For these reasons, for each u ∈ G, we compute the three closest mobile phone
towers, H (u)

1 , H (u)
2 and H (u)

3 , to the ground truth position H (u).
Given an algorithm X, a stream T , and a user u, we say that HX,T (u) is correct if HX,T (u) ∈

{H (u)
1 , H (u)

2 , H (u)
3 }, i.e., if the home location detected by X on T is at least one of the three

closest towers to u’s ground truth home location. Therefore, we define the home detection
accuracy ACCX,T of the combination of HDA X and stream T as the number of correctly
classified home locations over the total number of ground truth users |G|. As an instance,
ACCX,T = 0.50 means that, using stream T , algorithm X can correctly detect the home
location for half of ground truth users. Table 4 shows the accuracy of each combination
of stream and HDA, and Fig. 5a shows the accuracy of the top five HDAs for each stream
(see Supplementary Information 2 for the accuracy of all HDAs).

From a stream perspective, XDRs lead to the highest average accuracy, ACCX,XDRs =
0.65, slightly better than CPRs (ACCX,CPRs = 0.61), and significantly better than CDRs
(ACCX,CDRs = 0.43). This is because, on the one hand, streams with finer temporal granu-
larity (XDRs and CPRs) guarantee a larger number of observations than CDRs, also lead-
ing to fewer ties (see Supplementary Information 1). On the other hand, XDRs are favored
by their mixed nature, since they are generated by either the user’s usage of the phone (e.g.,
explicitly a message through an app) or the mobile network connection (e.g., automatically
downloading emails).

Focusing on XDRs and CPRs, TC algorithms are the best ones, especially those based
on weekdays and nighttime records (black bars in Fig. 5). In particular, TC-WK-19-7 is
the HDA achieving the best accuracy overall (ACCTC–WK–19–7,XDRs = 0.69), i.e., it detects
the correct home location for almost 70% of the ground truth users. On the contrary, al-
gorithms that implement the spatial perimeter (e.g., MA-R) and those based on daytime
records (e.g., TC-7-19, see dark grey bars in Fig. 5) achieve the worst accuracy. In particu-
lar, TC-WK-9-19 is the worst HDA overall with ACCTC–WK–9–19,XDRs = 0.11, i.e., it detects
the correct home location for just 10% of the users. Thus, there is a large variability of the
accuracy among the considered combinations of streams and HDAs, highlighting how
crucial their selection is. It is worth noting that the different nature of the streams reveals
different behaviours of the ground truth users. While XDRs and CPRs do not necessar-
ily require explicit actions by the users (hence, automatically capturing their position at
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Figure 5 (a) Home detection accuracy of the top five HDAs for each stream. Dark bars indicate algorithms
based on nighttime records, dark grey bars indicate those based on daytime records, light grey bars indicate
those using records during all day. The dashed line indicates the average accuracy across the top five HDAs. In
the x axis, we highlight in bold the best combination of stream and HDA. (b) Home detection accuracy of 13
HDAs for XDRs. (c) Home detection accuracy of 13 HDAs for CPRs

home during nighttime), CDRs do require a deliberate user action (calls), revealing that
users are more likely to make or receive calls during weekends (MA-WE) than during work-
days at night. Notice that, if we compute the accuracy considering just the closest tower
to a user’s actual home location as ground truth (i.e., H (u) = H (u)

1 ) the ranking of the most
accurate combinations of streams and HDAs does not change significantly (Fig. 6). Again,
XDRs lead to the highest average accuracy and HDAs based on weekdays and nighttime
records are way the best ones, even though the average accuracy drops down.

The home detection accuracy of an HDA on a stream identifies home locations as the
towers with the highest activity. We can relax this condition by defining a detected home
location to be correct if at least one of the top k towers detected by an HDA X on a
stream T is correct. We denote with H (k)

X,T (u) a tower that is within the k towers with
the highest activity according to HDA X and stream T for user u. We define the home
detection k-accuracy (ACC(k)

X,T ) of the combination of HDA X and stream T as the num-
ber of H (k)

X,T (u) over the total number of ground truth users |G|. Given this definition,



Pappalardo et al. EPJ Data Science           (2021) 10:29 Page 12 of 19

Figure 6 (a) Home detection accuracy of the top five HDAs considering just the nearest tower to the user’s
actual home as ground truth. Dark bars indicate algorithms based on nighttime records, dark grey bars
indicate those based on daytime records, light grey bars indicate those using records during all day. The
dashed line indicates the average accuracy across the top five HDAs. In the x axis, we highlight in bold the
best combination of stream and HDA. (b) Home detection 2-accuracy and (c) 3-accuracy, for the top five
HDAs for each stream

ACCX,T = ACC(1)
X,T . Figure 6b-c shows ACC(k)

X,T for k = 2, 3 and the top five HDAs of each
stream. See Supplementary Fig. 2 for the k-accuracy of all combinations of HDAs and
data streams. ACC(k)

X,T increases with k and XDRs lead to the highest average accuracy
(ACC(2)

X,XDRs = 0.78, ACC(3)
X,XDRs = 0.85). It is worth noting how, as k increases, DD climbs

the ranking of the top five most accurate HDAs for XDRs and CPRs, until it becomes the
best HDA for 3-accuracy.

3.3 Distance to actual home
For each user, we compute the distance of the home tower detected by a given combination
of stream and HDA to their actual home location. Figure 7a shows the five HDAs with
lowest average distance for the three streams. The average distance of the top HDAs is in
general lower than 5 km. Moreover, CPRs guarantee the lowest average distance overall.
Note that DD is slightly better than TC-WK-19-7 in this regard, for both XDRs and CPRs.
To investigate this aspect more deeply, we compute the distribution of the distance to
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Figure 7 (a) Average distance between the home location detected by each HDA (k = 1, any of the three
closest towers) on each stream and the actual user’s home location. (b) Distribution of the distance to the
actual home for DD and TC-WK-19-7 on XDRs and CPRs

home for DD and TC-WK-19-7 on XDRs and CPRs (Fig. 7b). We find that, for just one
user, TC-WK-19-7 detects a home location that is 100 km away to the actual one, leading
to an average distance higher than DD. However, if we compute the distribution of distance
to home only for those users whose home location is correctly detected, TC-WK-19-7
achieves a lower average distance than DD, resulting in the best HDA (Fig. 8). We do not
find any significant difference in the results by normalizing the distance to the actual home
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Figure 8 (a) Average distance between the home location detected by each HDA (k = 1, any of the three
closest towers) on each stream and the actual user’s home location considering only those users for which
the home is correctly detected. (b) Distribution of the distances to the actual home for DD and TC-WK-19-7
on XDRs and CPRs, considering only those users for which the home is correctly detected

by the average distance among the three closest towers to it, a proxy for the density of
towers in the area where the actual home is located (see Supplementary Information 3).

3.4 Data minimization
We then turn to the question of what is the minimum amount of data, for each stream,
that is required to achieve a given sought accuracy, and whether they are qualitatively dif-
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ferent at the time of doing so. For instance, do CPRs work better with less records than
XDRs, or vice versa? This experiment is important for both researchers and telco opera-
tors: it is usually not easy to access mobile phone data. Thus, requesting these data with a
principled approach rather than a “blanket” request, could go a long way in building trust
between companies and researchers, while also requiring less human resources and stor-
age infrastructure to prepare and share the data. To learn more about this, we run two
randomization algorithms.

The first one is based on sampling a random fraction of user records, for different val-
ues of the sampled fraction. We compute ACCX,T for 10%, 20%, . . . , 100% of the available
records for each user, and run this experiment five times to obtain multiple realizations of
the sampling process. Figure 9a,c shows the average detection accuracy varying the num-
ber of records used for TC-WK-19-7 and MA-WE (the HDAs with the best accuracy on
XDRs/CPRs and CDRs, respectively). The shaded areas indicate the standard deviation
over the five realizations.

We find three main results. First, while for CDRs the accuracy largely varies based on
the set of records selected per user, XDRs and CPRs guarantee more stable accuracy. Sec-
ond, a high fraction of CDRs is needed to achieve an accuracy similar to that obtained
using 100% of the records. For example, for MA-WE, at least 50% of the records are needed
(Fig. 9a). In contrast, a smaller fraction of XDRs is sufficient to achieve the same accuracy

Figure 9 Results of the first data minimization experiment. (a), (c) Number of records randomly selected
versus the average and standard deviation of home detection accuracy (k = 1, any of the three closest towers)
for TC-WK-19-7 and MA-WE. (b), (d) Number of days randomly selected versus the average and standard
deviation of home detection accuracy (k = 1, any of the three closest towers) for TC-WK-19-7 and MA-WE



Pappalardo et al. EPJ Data Science           (2021) 10:29 Page 16 of 19

as using all the records. Third, XDRs perform the best regardless of the fraction of records
selected, highlighting a fortiori that they should be preferred over the other two streams
when performing home location detection.

The second randomization algorithm samples whole days from each user’s timeline, and
only considers records for the selected days. Thus, we calculate the home detection algo-
rithms accuracy for all records of two days, three days, . . . , 12 days of the available ones,
and run this experiment five times to obtain multiple realizations of the sampling process.
Figure 9b,d shows the average home detection accuracy varying the number of days used
for TC-WK-19-7 and MA-WE. The results confirm those of the first experiment: (i) CDRs
lead to less stable accuracy than XDRs and CPRs; (ii) just a small fraction of days is enough
for XDRs and CPRs to achieve an accuracy similar to using all available days; (iii) XDRs
are the best stream regardless of the days that were selected. Supplementary Information
4 reports the results of both data minimization experiments for all the other HDAs.

4 Conclusions
Mobile phone data are a crucial data source for official statistics, with most of the tasks
involved including the identification of a device’s home location. In this paper, we pro-
vided an thorough evaluation of existing HDAs on an individual ground truth data set.
Our experiments reveal that the type of stream used - CDRs, XDRs, CPRs - heavily influ-
ences the accuracy of the home detection. Similarly, the choice of the algorithm is crucial:
algorithms based on weekdays and/or nighttime records – such as TC-WK-19-7 (records
between 7 pm and 7 am during weekdays) and TC-19-7 (all records between 7 pm and 7
am) – are the most accurate algorithms, regardless of the stream. As a consequence, using
XDRs in combination with TC-WK-19-7 is the solution leading the highest home detec-
tion accuracy and the lowest distance to the actual home overall. In contrast, HDAs based
on daytime records or spatial perimeter should be avoided given their low accuracy.

Nevertheless, our data minimization experiment revealed that XDRs and CPRs are more
resilient than CDRs to the reduction of the number of records available per user, which also
impact the number of ties in towers identified as homes. Overall, our work demonstrates
that CDRs, the most used stream in the literature to detect individuals’ home, at least
nowadays, lead to low accuracy and stability, and should be handled more carefully.

As future work, we plan to exploit our ground truth dataset to investigate most sophis-
ticated solutions to home location detection. For example, rather than just relying on the
records related to a tower, one could exploit the entire spatio-temporal information con-
tained in the full trajectory of a user. In this regard, deep learning approaches to human
mobility [23] have the potential to uncover complex patterns and boost the accuracy of
home location detection.

Our study has also several limitations. First, the sample size is relatively small at 65
participants. However, participants consented to giving us all their digital traces for two
weeks, providing high coverage and fine resolution of individual behaviors. Still, in future
research, it would be desirable to have a larger and more representative sample of partici-
pants consenting to these kind of study. Similarly, since for privacy reasons the participants
did not provide us any demographic information (e.g., gender, age), the algorithms may be
under/overestimating activity for poorer versus richer participants, or maybe some distin-
guishing behaviors given gender or age. We hope all these shortcomings will be addressed
by the community or even ourselves in future work with better access to data. Finally, since
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all participants were employed and worked during business hours, our study is biased to-
wards people with the associated mobility routine. We hope to come back to this problem
in the near future.

In the meantime, experiences like ours may contribute to shape the discussion on what
the best mobile phone stream is to capture presences and human mobility patterns. This is
crucial because the decisions of citizens and policy makers depend on what we measure,
how good our measurements are and how well our measures are understood with the
ultimate goal of building a more consistent and comparable body of knowledge.
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