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Abstract: As the performance and complexity of machine learning models have grown significantly
over the last years, there has been an increasing need to develop methodologies to describe their
behaviour. Such a need has mainly arisen due to the widespread use of black-box models, i.e.,
high-performing models whose internal logic is challenging to describe and understand. Therefore,
the machine learning and AI field is facing a new challenge: making models more explainable
through appropriate techniques. The final goal of an explainability method is to faithfully describe
the behaviour of a (black-box) model to users who can get a better understanding of its logic, thus
increasing the trust and acceptance of the system. Unfortunately, state-of-the-art explainability
approaches may not be enough to guarantee the full understandability of explanations from a human
perspective. For this reason, human-in-the-loop methods have been widely employed to enhance
and/or evaluate explanations of machine learning models. These approaches focus on collecting
human knowledge that AI systems can then employ or involving humans to achieve their objectives
(e.g., evaluating or improving the system). This article aims to present a literature overview on
collecting and employing human knowledge to improve and evaluate the understandability of
machine learning models through human-in-the-loop approaches. Furthermore, a discussion on the
challenges, state-of-the-art, and future trends in explainability is also provided.

Keywords: explainable AI; human-in-the-loop; human knowledge; explainability; traceability; inter-
pretation; understandability; machine learning; blackbox algorithms

1. Introduction

The widespread use of Machine Learning (ML) models demonstrated its effectiveness
in supporting humans in various contexts like medicine, economics, computer science and
many more, while driving a never-seen technological advancement. The efficiency of such
systems on both general and domain-specific tasks has driven the development of models
capable of achieving even higher performance. For example, the recent development of
Deep Learning and Deep Neural Networks (DNN) outperformed state-of-the-art models
accuracy- and performance-wise on various tasks, such as image classification, text transla-
tion, etc. Despite the widespread excitement carried by such accomplishments, the scientific
community quickly understood that ML systems could not rely on performance alone.
Indeed, most complex, high-performing machine learning models were missing an essen-
tial feature. Due to their intricacy, their behaviour was not understandable to the users
employing them, consequently leading to a loss of trust in such systems. Models lacking
such a trait are usually referred to as black-box models, i.e., models with either known or
observable input and output and hard-to-understand behaviour. These models are opposed
to white-box models, i.e., systems with known or readily understandable behaviours. Such
a fundamental distinction brought forth the necessity of developing methodologies to
faithfully represent the logic applied by (black-box) models in a human-understandable
fashion. The Explainable AI (XAI) research field poses this objective as its primary focus.
Given the profound differences in how humans and machine learning systems learn, ex-
plain and represent knowledge, bridging the gap between model and human behaviour
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is another fundamental objective of interest. Therefore, not only is it essential to faith-
fully describe model behaviour, but also to properly shape it to make it understandable
to humans. For this reason, human-in-the-loop approaches have been widely employed,
directly engaging the crowd to collect (structured) knowledge to evaluate and improve the
interpretability of models and their explanations. Moreover, achieving a faithful, complete
and understandable representation of the behaviour of a machine learning system would
not only increase human trust and acceptance. Indeed, it would also be helpful to debug
such systems, allowing researchers to understand their faults and consequently driving
models’ performance even higher. While increasing users’ trust in models can be achieved
by explaining their behaviour, other sources of uncertainty may influence humans’ con-
fidence in machine learning systems. Model uncertainty either comes from the inability
of the model to suitably explain the data (epistemic uncertainty), from the presence of
noise in the observations (aleatoric uncertainty), or from the predicted output (predictive
uncertainty). A variety of approaches have been developed to solve and quantify model
uncertainty [1], consequently contributing to increase model trustworthiness and detect
scenarios in which explanations and model inspection are needed. In addition to increasing
human trust, there are many reasons to explain the behaviour of machine learning models,
like justifying its decisions, increasing its transparency to identify potential faults, improve
the model, or extract new knowledge, relationships, and patterns [2]. In recent times, there
has been a focus on explainability aimed at making explicit causal relationships between
a model’s inputs and its predictions. Such an objective is especially relevant when these
relationships are not evident to the end-users employing the system or hard to understand.
Moreover, such explanations provide users with a causal understanding [3] of the reasons
certain input features contribute to a prediction.

Despite the call for explainability, there are still ongoing discussions on whether and
when explainability is needed. Concerning such an interesting topic, Holm [4] states that
the usage of black-box models is motivated when they produce the best result, when the cost of a
wrong answer is low, or when they inspire new ideas. Another scenario in which explainability is
not mandatory is low-stakes scenarios where trusting a model without understanding its be-
haviour would not cause any harm, even if it would misbehave. Even in high-stakes scenar-
ios, there are some conditions and situations in which explaining the behaviour of the sys-
tem is not fundamental. It is particularly true in the medical field. If an AI model yields accu-
rate predictions that help clinicians better treat their patients, then it may be useful even without a de-
tailed explanation of how or why it works (“Should AI Models Be Explainable? That depends”—
https://hai.stanford.edu/news/should-ai-models-be-explainable-depends, accessed on 2
June 2022). Moreover, experiments [5,6] have revealed that providing explanations about a
model’s behaviour may end up generating unmotivated trust in the model. Consequently,
it is fundamental to understand the role of explainability depending on the context in
which the model to explain or inspect is applied and the scope in which the model deserves
trust even without explainability [7].

This article provides an overview of the state of the art on the role and the contribution of
human knowledge in the context of explainability of machine learning models and explainable
AI. In particular, we cover methods collecting and employing knowledge to create, improve,
and evaluate the explainability of blackbox models in AI. We frame such a context from the
human perspective, focusing on methodologies whose main objective is to employ human
knowledge as part of an explainability process. The rest of this article is structured as follows.
Section 2 describes the fundamental definitions provided in the explainability research field
while discussing and contextualizing their features. An overview of different methods and
approaches found in the state of the art of explainability and explainable AI is also summarised.
Section 3 illustrates the process applied to collect and filter the articles considered in this
review. Section 4 presents the various explainability-related tasks in which human knowledge
and involvement played a fundamental role, describing their approaches and discussing the
findings from the literature. Section 5 summarises the article’s content and describes open
challenges in explainable machine learning.

https://hai.stanford.edu/news/should-ai-models-be-explainable-depends
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2. Explainability and Explainable AI

Why can we not blindly trust a high accuracy model? Why do humans need to
understand ML models? Answering these questions is not as straightforward as it may
seem. There are several reasons that motivate the need to explain the behaviour of machine
learning systems [2], e.g., understanding a model’s logic would allow its developers to
improve its performance; bank employees would be able to justify the reasons behind
the rejection of a loan when such a decision is based on a model’s prediction, etc. From a
broader perspective, the main reason it is crucial to accurately understand the behaviour
of such systems is that the unjustified application of their predictions might negatively
impact our lives. In her book “Weapons of Math Destruction” [8], Cathy O’Neil describes
and analyses real-life scenarios in which the improper usage of AI and machine learning
models—mainly due to unjustified trust in the model—negatively affected people’s lives.
In particular, she emphasises that opacity is one of the three features characterising the
so-called “Weapons of Math Destruction”. Such a statement implicitly suggests that the
application of machine learning models lacking transparency or instruments to explain
their behaviour may lead to severe consequences.

2.1. Definitions

The central concept associated with Explainable AI is the notion of “explanation”.
An explanation can be defined as an “interface between humans and a decision-maker that is,
at the same time, both an accurate proxy of the decision-maker and comprehensible to humans” [9].
Such a description highlights two fundamental features an explanation should have. It must
be accurate, i.e., it must faithfully represent the model’s behaviour, and comprehensible,
i.e., any human should be able to understand the meaning it conveys. Such properties
highlight the two sides of explainability: humans and models. Models should be trained to
exhibit their behaviour (directly or through explainability techniques) while maintaining
high accuracy and performance. A human interpreter should be capable of understanding
the explanation provided by the model or explainability method. In summary, the objective
of an explanation is to bridge the gap between these two worlds.

Such a dualism between human understanding and model explainability can be
observed in various definitions available in the literature. In their summary of XAI, Arri-
eta et al. [10] provide the following characterisation of Explainable Artificial Intelligence.

“Given an audience, an explainable Artificial Intelligence is one that produces details or
reasons to make its functioning clear or easy to understand.”

Such a characterisation makes a series of fundamental assertions. First of all, it clearly states
that the algorithm must be able to “produce details or reasons to make its functioning clear or
easy to understand”. This statement exemplifies the so-called self-explaining systems, i.e., mod-
els producing their output and corresponding explanations simultaneously (e.g., decision trees
and rule-based models). Such systems are either inherently explainable or trained using both
data and its explanations (i.e., human rationale) [11], generating models able to explain their
behaviour. In the second place, Arrieta et al. consider the “audience” as a relevant entity, thus
acknowledging that the interpreter influences the understandability of an explanation. Indeed,
understanding how to shape explanations properly [12] is as essential as understanding how
they are perceived by the audience [12–14]. For example, while an AI expert would probably
prefer a detailed description of the model, a non-expert user would likely favour a small set of
examples [15] representing the system’s behaviour. The last aspect addressed in the definition is
that the explanation must be “clear or easy to understand”. Unfortunately, the concept of “easy
to understand” is not the same for everyone. Indeed, it may depend on various human-related
factors, such as the user’s expertise with AI and ML systems, the context in which they are
born, and many more [16]. Therefore, it is fundamental to properly understand how to tailor
explanations depending on the audience’s characteristics. Moreover, such a definition depicts a
system inherently able to explain its behaviour. It does not explicitly consider models requiring
the application of so-called post-hoc explainability techniques, i.e., methods able to explain the
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behaviour of a ML system after its outcome has been computed. This distinction is just the first
of many dimensions used to classify explainability approaches. Other categorisations classify
models depending on (i) whether they are able to explain the whole model’s prediction process
(global explainability) or a single prediction instance (local explainability); (ii) whether they can
be applied to all types of models (model agnostic) or a specific type only (model specific); (iii)
the shape of the explanations (e.g., decision rules, saliency maps, etc.) and many more [9].

Before overviewing the most recent achievements in Explainable AI, it is essential to
shed light on the various facets of explainability and explainable systems. Such a clarifi-
cation is necessary since different research studies frame the problem from different but
similar perspectives addressing distinct aspects related to explainability [2]. Among these
perspectives, we claim interpretability and understandability are the most important ones
described in the literature as they are strictly associated with the human side of explainabil-
ity. Interpretability is defined as “the ability to explain or provide meaning in understandable
terms to a human” [9]. Arrieta et al. [10] provide a similar definition for comprehensibility.
Understandability is “the characteristic of a model to make a human understand its function (i.e.,
how the model works) without any need for explaining its internal structure or the algorithmic
means by which the model processes data internally” [10]. Despite the plethora of definitions of
explainability-related concepts in the literature, the final aim of the XAI research field can
be summarised as developing inherently explainable systems and explainability techniques
that faithfully explicit the behaviour of complex machine learning models tailoring their
explanation in an understandable way for humans.

2.2. An Overview of the State of the Art

Given the broadness of the current state-of-the-art in Explainability and Explainable AI
and the target of this article, we provide an overview of explainability methods to outline
the variety of approaches available in the literature. For a complete and detailed summary
of the state-of-the-art explainability, we advise the reader to refer to [2,9,10,17,18].

One of the most interesting intuitions conceived in this research field is that inherently
explainable models can be employed to approximate the behaviour of black-box models.
Such approximations can explain the original model as they are promptly understandable.
One of the most well-known methods in this category is Local Interpretable Model-agnostic
Explanations’ (LIME) [19]. This post-hoc, model-agnostic, local explainability approach
faithfully explains the predictions of any classifier or regressor by approximating it locally
with an interpretable representation model. It was also extended to address the so-called
“trusting the model” problem by developing Submodular Pick-LIME (SP-LIME) to explain
multiple non-redundant instances of a model prediction. This process aims to increase
users’ trust in the whole model since providing and end-user with a single understandable
outcome is not enough to achieve such an objective. Lundberg et al. [20] presented a unified
framework for interpreting predictions named SHapley Additive exPlanations (SHAP).
SHAP unifies six different local methods—including LIME [19] and DeepLIFT [21]—by
defining the so-called class of additive feature attribution methods, described using the
novel perspective that any explanation of a model’s prediction is a model itself. The authors
also present SHAP values as a unified measure of feature importance, propose a new
estimation method and demonstrate that the computed values are better aligned with
human intuition and discriminate better among model output classes.

An intuitive and straightforward way of explaining the local behaviour of a machine
learning system is highlighting the different parts of the output considered by the model to
make its prediction. This explanation format is generically referred to as highlight. It has
been widely applied to explain the behaviour of models performing various tasks involving
pictures (e.g., image classification, object detection, etc.) In this case, a highlight—usually
a heatmap or saliency map overlapped on the considered picture—identifies the different
pixels or groups of pixels the model considered to make its prediction. One of the best-known
approaches employing such a format is Gradient-weighted Class Activation Mapping (Grad-
CAM) [22]. It generates explanations of Convolutional Neural Network (CNN)-based models
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by using the gradients of a concept of interest at the final convolutional layer to produce a
localisation map highlighting the significant regions in the image for predicting the concept.
The authors also described an extension named Guided Grad-CAM to create high-resolution
class-discriminative visualisations with the ability to show fine-grained importance about
the entity identified by combining Guided Backpropagation and Grad-CAM visualisations
via pointwise multiplication. Despite outperforming state-of-the-art methods on both inter-
pretability and faithfulness, Grad-CAM had some limitations, namely, a performance decrease
when localizing multiple instances of the same class and the lack of completeness in identi-
fying entities in single object images. Seeking to overcome them, Chattopadhyay et al. [23]
proposed Grad-CAM++, enhancing Grad-CAM by improving object localisation and explain-
ing multiple object instances in a single picture. Moreover, Grad-CAM++ was combined with
SmootGrad [24] to strengthen its capabilities. Smooth Grad-CAM++ [25] improves object
localisation even further by applying a smoothening [24] technique when computing the
gradients involved in Grad-Cam++. It also provides visualisation capabilities to generate
explanations for any layer, subset of feature maps or subset of neurons within a feature map
at each instance at the inference level.

Highlights are also employed to shape the explanations of models performing Natural
Language Processing (NLP) tasks (e.g., question answering, sentiment analysis, etc.) In this
context, a highlight—usually represented as a saliency map between couples of words or
saliency highlights, i.e., coloured boxes with varying colour intensities depending on the
word relevance, overlapped to the input text—specifies the terms or the piece of text that
the model employed to define the outcome of the task. Ghaeini et al. [26] utilised saliency
visualisations to explain a neural model performing Natural Language Inference (NLI).
Such a task requires the model to define the logical relationship between a premise and a
hypothesis choosing between entailment, neutral or contradiction. The authors proposed
and demonstrated the effectiveness of saliency maps in describing model behaviour on
different inputs and between different models, revealing interesting insights and identifying
the critical information contributing to the model decisions. Dunn et al. [27] combined
dependency parsing, BERT [28], and the leave-n-out technique to develop a context-aware
visualisation method leveraging existing NLP tools to find the groups of words that have the
most significant effect on the output. It employs dependency parsing tools combined with
a model-agnostic Leave-N-Out pre-processing to identify contextual groups of tokens that
have the largest perceived effect on the model’s classification output. Such a methodology
produces saliency highlights with more relevant information about the classification and
more accurate highlights.

Other techniques provide humans with examples, i.e., representative data samples
to explain the model’s behaviour. Kim et al. [29] introduced Concept Activation Vectors
(CAVs) to interpret the internal state of a Neural Network (NN) in terms of human-friendly
concepts. They employed the Testing with CAV (TCAV) technique to quantify how im-
portant a user-defined concept is to an image classification result. In particular, this
methodology orders the set of pictures associated with any user-defined concept received
in input based on the computed values. Jeyakumar et al. [15] described ExMatchina. This
open-source explanation-by-example implementation identifies and provides the nearest
matching data samples from the training dataset as representative examples applying
cosine similarity. They also proved that users prefer this type of explanation for most tasks
while still acknowledging that the main limitation of their method is the quality of the
training data.

In conclusion, the literature in Explainable AI presents a wide variety of methods,
principles and structures useful to collect insights about the behaviour of AI and ML sys-
tems. Such approaches are organized depending on their applicability, their characteristics
and the explainability-related aspect they address. We presented the definitions we argue
to be the most relevant ones and surveyed the literature to provide an overview of the
variety of the available methods.
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3. Research Methodology

Given the broadness of the literature on Explainability and Explainable AI and the
impact of such a research field over the last years, we focus on articles and papers published
over the last five years, from 2017 to 2022. We collected articles from bibliographic databases,
combining input from both open-access (i.e., Google Scholar) and subscribers-only (i.e.,
Scopus) sources in the field of computer science. We implemented a strategy that is aligned
with the PRISMA methodology [30] for literature reviews. We defined a search strategy
to collect articles that include any pair of concepts created by combining the keywords
listed in Table 1. In particular, all the possible pairs of keywords have been generated,
by concatenating one explainability keyword (left column in the table) with one knowledge-
related keyword (right column in the table). The reader can refer to Appendix A for the
detailed structure of the queries performed.

Table 1. The list of keywords used to generate the couples used to search for papers.

Explainability-Related Keywords Knowledge-Related Keywords

Interpretable Machine Learning Knowledge Extraction
Explainable Machine Learning Knowledge Elicitation

Explainable Artificial Intelligence Crowdsourcing
Explainable AI Human-in-the-Loop
Explainability Human-centred Computing

Interpretability Human-centred Computing
Human Computation

Concept Extraction

When querying Google Scholar, we excluded all the articles whose title contained
the words “survey” and “review” while considering only the first 100 articles ranked by
relevance for each query. We restricted our research to the top 100 results as we noticed
a drop in pertinence to our topic of interest after the 80th position in the ranking. Notice
that we do not have full control on the implementation of the search strategies run by the
bibliographic databases: for instance, while Google runs its matching over the full text of
the article, others may only search the metadata of the articles (title, abstract, keywords,
categories, etc.)

In total, we examined: (i) 3718 non-unique articles from Google Scholar, extracted
by querying the bibliographic database using 48 combinations of keywords performed
through the tool Publish or Perish 8.2.3944.8118 (Harzing, A.W. (2007) Publish or Perish,
available from https://harzing.com/resources/publish-or-perish, accessed on 28 April
2022), finally resulting in 2056 unique papers; and (ii) and 327 non-unique articles from
Scopus, queried using the Scopus web interface and following the same query criteria used
for Google Scholar, resulting in 216 unique articles. Indeed, most of the queries performed
on the Scopus bibliographic database returned very few results, as the scope of each of
them was quite narrow.

By combining the two sources, we finally obtained an integrated set of 2197 unique
articles to analyse. The authors manually inspected the collected articles, considering only
the ones attaining to the scope of this review. In particular, we considered all and only
the articles in which humans and human knowledge played a fundamental role in with
respect to the explainability of the system. With the aim of collecting a broad selection of
documents, no further exclusion condition was applied. Finally, the bibliographic references
cited in the collected documents have also been inspected, consequently extending the
considered literature.

4. Human Knowledge and Explainability

Bridging the understandability gap between humans and black-box models requires
the development of techniques able to answer the many-faceted problem of explainability,
addressing the faithfulness and completeness of the explanations representing the model’s

https://harzing.com/resources/publish-or-perish
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behaviour, while also accounting for the capability of the human interpreter to understand
it. In the field of machine learning, humans are commonly employed to collect or label data,
debugging and evaluate the outcomes of machine learning models, and many more [31].
Due to the recent enthusiasm in XAI, researchers’ data interests shifted towards collecting
human knowledge in the form of human rationale [32], i.e., the reasoning applied by
humans to perform a ML task. Such valuable [33] information is at the centre of many
explainability-related tasks and can be employed in a wide variety of ways (summarised in
Figure 1). In a broader sense, human knowledge is also (indirectly) applied in most human-
in-the-loop approaches in which explanations are used as a means to explore [34], evaluate,
or improve the explainability and (sometimes) the performance of models. Furthermore,
humans are directly involved in the creation [35], assessment, or improvement [36] of
such explanations or the model itself [37]. Given the critical role of human knowledge in
such processes, keeping the human-in-the-loop is essential to achieve interpretable and
explainable AI [38,39]. In the following sections, we report on a wide variety of approaches
using humans and their knowledge to achieve such objectives and discuss their findings.

Figure 1. In the figure, the four main ways to use of human knowledge in explainability are rep-
resented, namely, knowledge collection for explainability (red), explainability evaluation (green),
understanding human’s perspective in explainability (blue), and improving model explainability
(yellow). In the schema, the icons represent human actors.

4.1. Explainability and Human Knowledge Collection

In computer science, crowdsourcing is a well-known practice widely employed to
collect a large amount of human-generated data by engaging heterogeneous groups of
people with varying features and knowledge in undertaking a task [40]. Given the fun-
damental role of humans in XAI, crowd knowledge collection is fundamental to leverage
human intelligence at scale to achieve robust, interpretable, and hence trustworthy AI
systems [41]. When addressing the explainability of black-box models, many different
factors influence such an approach. In particular, depending on the complexity of the
system [42], the model’s purpose, the complexity of the task, and its goal, it might be
necessary to involve individuals with specific knowledge or features [43]. Indeed, complex
explainability-related tasks may require preliminary expertise which translates into the in-
volvement of expert users [44]. For example, collecting and employing human knowledge
to label [45,46] and evaluate visual explanations (e.g., heatmaps) extracted from an image
classification model could be trivial as users may be asked to just highlight the various parts
of the picture they deem to be important [47]. On the other hand, editing attention maps
to successfully improve the explainability of a system [48] or providing domain-specific
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knowledge [32] are not tasks that can be easily accomplished by non-expert users. As a
consequence, interactive approaches have been developed to employ human knowledge at
its best while accounting for such complexities.

In the context of Question Answering systems, Li et al. [49] collected a dataset by
engaging crowdworkers in interacting with the system and providing feedback on the
quality of the answers both in a structured and unstructured way. The collected data
were then employed to train a new model extending the original one with re-scoring and
explanation capabilities. In the context of image classification tasks, Mishra et al. [47]
designed a concept elicitation pipeline to gather high-level concepts to build explanations
for image classification datasets. The data were collected as mask–label pairs by showing
the picture’s true label to users and having them outline both the entity and some of the
features they used to identify it. Per-image and per-class aggregations were employed
to build a variety of concept-driven explanations. Similarly, Uchida et al. [50] proposed
a human-in-the-loop approach collecting human knowledge to generate logical decision
rules to explain the output of classification models. They explained the outcome of the
original model by collecting human-interpretable features of pictures as text to generate
rule tables associating the classes and the collected features. Balayn et al. [51,52] pro-
posed a Game With a Purpose (GWAP) to collect high-quality discriminative and negative
knowledge. Inspired by the popular game GuessWho?, users are engaged in a competitive,
two-player game in which each user should guess the card chosen by the challenger by
asking questions about the entity represented on the card. The answers to such questions
represent the (structured) knowledge collected about the entity of choice. Such a particular
kind of knowledge can be useful to improve the trustworthiness and robustness of AI
systems. While [47,50] directly involved users in the description of a series of pictures,
Tocchetti et al. [53] proposed a two-player gamified activity to collect human knowledge
describing different features of real-world entities while unbinding pictures from the fea-
ture description process. Indeed, one of the players is asked to predict the entity in the
picture by guessing its features through closed questions while the other player provides
the answers, classifies and outlines the guessed features on the image. The described
methods generate explanations and/or collect features while unbinding the model itself
from the data collection process, using only its input. While such an approach eases the
data collection process, employing the explanations of a model enhances and contextualises
the collected content. Zhao et al. [54] designed ConceptExtract, a system implementing
a human-in-the-loop approach to generate user-defined concepts for Deep Neural Net-
work (DNN) interpretation. Users can overview and filter image patches extracted from
the input pictures, provide new visual concepts, and overview the performance and the
interpretation of the target model. Attempting to achieve a similar objective, Lage et al. [55]
proposed a human-in-the-loop approach to learn a set of transparent concept definitions
relying on the labelling of concept features. Users were engaged to provide their under-
standing of the domain of interest, consequently making the collected concepts intuitive
and interpteable. In particular, they were asked to define the associations between a series
of features and concepts, and provide feedback on whether the function learned by the
model satisfies the aforementioned conditions. A process similar to [54] was employed
in the development of FaxPlainAC [56], a tool to collect user feedback on the outcome
of explainable fact-checking models. When a query is received by the system, its deci-
sion, i.e., the truthfulness of the input fact, and the considered evidence are displayed.
Users are asked whether the documents employed by the system to generate such content
are supporting or refuting the input by highlighting the most relevant parts of the text,
or whether they are misleading or irrelevant. Sevastjanova et al. [57] extended the usage
of explainability to support interactive data labelling of complex classification tasks by
applying visual-interactive labelling and gamification. Such an approach is implemented in
QuestionComb, a rule-based learning model that presents explanations as rules, supporting
iterative and interactive optimisation of the data. These methods demonstrate that data
collection processes may employ explanations and model details to improve the level of
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detail and accuracy of the collected knowledge. Furthermore, the strategy to apply is also
influenced by the kind of data desired, i.e., task-specific or generic, resulting in the design
of a variety of data collection techniques.

4.2. Evaluation of Explainability Methods by Means of Human Knowledge

The design and implementation of approaches to choose the best explainability method
or explainable model has been at the centre of discussion of the research community for
years. Consequently, recent research efforts have focused on the collection and devel-
opment of benchmarks due to their capability to enable, organise and standardise the
evaluation and comparison of multiple models by means of explainability-related mea-
sures. Mohseni et al. [58] developed a benchmark for quantitative evaluation of saliency
map explanations of images and text tasks through multilayer, aggregated human attention
masks. They collected human annotations of salient features by asking users to highlight
the most representative parts of documents or images. The efficacy of their approach
was validated through a series of experiments, demonstrating its capabilities to evaluate
the completeness and correctness of model saliency maps. De Young et al. [59] proposed
the Evaluating Rationales And Simple English Reasoning (ERASER) benchmark, com-
prising various datasets and tasks extended with human annotations of rationale. Such
datasets cover various NLP tasks, such as question answering, sentiment analysis, etc. They
evaluated their benchmark on a set of baseline models with respect to a set of proposed
metrics designed to measure faithfulness and the agreement between human annotations
and model’s extracted rationales. While benchmarks provide fixed datasets to evaluate
model explainability, Schuessler et al. [60] developed a library that allows researchers to
create customized datasets for human-subject and algorithmic evaluations of explanation
techniques for image classification.

The employment of automatic metrics to evaluate and compare model explainability
is still an interesting topic of debate and interest within the XAI literature. In particular, it
is argued that the metrics used to evaluate explainability methods must be chosen carefully
while there is significant room for improvement for such assessment approaches [61].
Moreover, exploring the relation between human-based and automatic evaluations is
another aspect researched in the XAI community [62]. On such a topic, while a variety of
evaluation methods and approaches have been proposed [63], it is still argued that the best
way to assess the interpretability of black-box models is through user experiments and
user-centred evaluations as there is no guarantee for the correctness of automated metrics
in evaluating explainability [64] and high explainability metric scores do not necessarily
reflect high human interpretability in real-world scenarios [64,65]. The same is true for
well-known metrics (e.g., F1-score) [66]. Supporting such claims, Fel et al. [65] conducted
experiments to evaluate the capability of human participants to leverage representative
attribution methods to learn to predict the decision of various image classifiers. Such a
process was aimed at assessing the usefulness of explainability methods and the capability
of existing theoretical measures in predicting their usefulness in practice. The framework
they designed can be employed to perform such an evaluation given a black-box model,
an explanation method and a human subject to predict the predictor (i.e., the so-called
meta-predictor). A two phase procedure is applied. In the learning phase, the human
meta-predictor is trained using triples made of an input sample, the model’s prediction and
its explanation to uncover rules describing the functioning of the model. In the evaluation
phase, the accuracy of the meta-predictor—and consequently, the relevance of the rules they
learned—is tested on new samples by comparing their predictions with the ones provided
by the model. In their conclusions, the authors argue that faithfulness evaluations are poor
substitutes for utility and it is necessary to put the human in the loop. Moreover, they
discuss that such metrics do not account for the usefulness of the explanation to humans
as in some cases they can either be not useful or generate ambiguity. We argue that the
main problem is not related to the application of automatic evaluations and metrics, but
on the interpretation of the computed (faithfulness) scores. Faithfulness is just one side of
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the coin, i.e., the model’s side, as it measures how close the derived explanation is with
respect to the true reasoning process of the model. The other side of the coin is represented
by interpretability, i.e., a human interpreter should be able to properly understand the
explanation. The misunderstanding occurs when there is confusion between these two
aspects. Indeed, model faithfulness and interpretability are not to be considered equivalent
when it comes to the evaluation of the explainability of models.

The evaluation of the interpretability of the explanations of a black-box model is
usually performed by involving users in manually interpreting the explanations generated
by the system or derived through explainability methods. The same approach is applicable
to the evaluation of the interpretability of black-box models, i.e., directly understanding the
intrinsic explainability of a model [67]. Such evaluations are usually achieved through user
questionnaires [66,68–70] whose questions vary depending on the nature of the experiment,
model, etc. On the other hand, comparing the interpretability of different explainability
methods to choose the best suited one requires the design and implementation of ad
hoc human-in-the-loop approaches. Soltani et al. [71] improved existing XAI algorithm
by employing cognitive theory principles with the final aim of providing explanations
similar to domain experts. Humans were involved in a series of experiments aimed at
evaluating both the novel approach and the basic one to understand which one led to the
best explanations. In their work, Lu et al. [64] designed a novel human-based evaluation
approach using crowdsourcing to evaluate saliency-based XAI methods—mainly focusing
on methods that explain the prediction of picture-based models, e.g., Grad-CAM [22],
SmoothGrad [24], etc.—through a human computation game named “Peek-a-boom”. Their
human-centred approach compares different Explainable AI methods to identify the one
yielding to the best interpretations. In the proposed Game With a Purpose (GWAP), the XAI
method plays the role of Boom, revealing parts of an image as the game progresses, and the
player plays the role of Peek, guessing the entity in the picture from the parts displayed.
In summary, evaluating the explainability of black-box models requires assessing both
human interpretability and faithfulness, while not misunderstanding these two concepts
and consequently generating unmotivated trust.

More commonly, humans are engaged to evaluate the effectiveness of methods in
generating explanations and their usefulness in real scenarios [72–75]. Zhao et al. [73]
employed Generative Adversarial Networks (GANs) to generate counterfactual visual ex-
planations. Crowd workers were recruited to evaluate their effectiveness for classification.
In the context of Visual Question Answering, Arijit et al. [74] involved users in a collabora-
tive image retrieval game, named Explanation-assisted Guess Which (ExAG), to evaluate
the efficacy of explanations, finally demonstrating the usefulness of explanations in their
setting. Alvarez-Melis et al. [75] implemented a method to generate explanations based on
the concept of weight of evidence from information theory. User experiments demonstrated
the effectiveness of the methodology in generating accurate and robust explanations, even
in high-dimensional, multi-class settings. Zeng et al. [76] present a human-in-the-loop
approach to explain ML models using verbatim neighbourhood manifestation. A three-
stage process is employed to (i) generate instances based on the chosen sample, (ii) classify
the generated instances to define the local decision boundary and delineate the model
behaviour, and (iii) involve users in refining and explore the neighbourhood of interest.
A series of experiments revealed the effectiveness of the implemented tool in improving
human understanding of model behaviour. Baur et al. [77] presented NOVA, a human-
in-the-loop annotation tool to interactively train classification models from annotated
data. The tool allows the employment of semi-supervised active learning to pre-label data
automatically. Moreover, it implements recent XAI techniques to provide users with a
confidence value of the predicted annotations and visual explanations. Heimerl et al. [69]
employed NOVA in emotional behaviour analysis. They engaged non-expert users and
evaluated the impact and the quality of the explanations extracted, revealing their effective-
ness in the presented use-case while getting useful insights on the employment of visual
explanations. Steging et al. [32] proposed a knowledge-driven method for model-agnostic
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rationale evaluation employing human-in-the-loop to collect dedicated test sets to evaluate
targeted rationale elements based on expert knowledge of the domain.

Finally, while part of the XAI research community focused on designing and im-
plementing methods to generate explanations, the development of techniques aimed at
generating trust in models is another fundamental aspect of interest. Zöller et al. [78]
implemented XAutoML, an interactive visual analytic tool aimed at estabilishing trust in
AutoML-generated models. The user-centered experiments reveled the effectiveness of the
tool in generating trust while addressing the explainability needs of various user groups
(i.e., domain experts, data scientists, and AutoML researchers). De Bie et al. [79] proposed
and evaluated RETRO-VIZ, a method to estimate and evaluate trustworthiness of regres-
sion prediction. The system comprises RETRO, a method to quantitatively estimate the
trustworthiness of the prediction, and VIZ, a visualisation provided to users to identify the
reasons for the estimated trustworthiness. Although they demonstrated the effectiveness
of their methodology, the authors remark it must be used with caution as to not generate
unguided trust.

4.3. Understanding the Human’s Perspective in Explainable AI

An explanation that cannot be properly understood by a human has no value and may
potentially mislead the user. Indeed, it is essential to provide accurate and understandable
explanations as poor explanations can sometimes be even worse than no explanation at
all [80] and may also generate undesired bias in the users [81,82]. As a consequence, prop-
erly structuring [83] and evaluating the interpretability and effectiveness of explanations
requires a deep understanding of the ways in which humans interpret and understand
them, while also accounting for the relationship between human understanding and model
explanations [84,85]. For such reasons, the explainable AI research field spreads from
IT-related fields, such as computer science and machine learning, to a variety of human-
centred disciplines, such as psychology, philosophy, and decision making [86]. Therefore,
recent studies aimed at evaluating human behaviours when exploring, interpreting and
using explanations have been conducted [12,13,87]. Moreover, Gamification and Games
With a Purpose have been proven to be quite effective in assessing how humans interpret
XAI explanations [88]. Feng et al. [6] evaluated how humans employ model interpretations
and their effectiveness, measured in terms of improvement in human performance. They
designed Quizbowl, a human–computer cooperative setting for question answering, sup-
porting various forms of interpretations whose objective is to guide users to decide whether
to trust the model’s prediction or not. The question to answer is displayed word-by-word
and players are asked to stop the display as soon as the model’s interpretations are enough
to answer the question correctly, but before it is completely revealed. They discovered that
interpretations help both non-expert users and experts in different ways. Additionally,
while expert users were able to mentally tune out bad suggestions, novice users trusted the
model too much, consequently choosing an incorrect answer. Such a result demonstrates
that even though one of the objectives of explainability is to improve the user’s trust in
the model, it is necessary to organise the content provided as to avoid generating a sense
of overconfidence in the system. A similar result was achieved by Ghai et al. [89], who
combined XAI techniques in the context of Active Learning. They analysed the impact of
the proposed approach, while also researching on human-related aspects. Their findings
revealed that explanations successfully supported users with high task knowledge, while
impairing those with low task knowledge. Indeed, users with low knowledge were more
prone to agreeing with the model, even when it misbehaved. On the other hand, they were
able to demonstrate the effectiveness of explanations in calibrating user trust and evaluat-
ing the maturity of the model. In conclusion, achieving a high level of transparency is not
always beneficial to improving the user’s understanding [5,81]. Indeed, providing complex
or a large number of explanations would generate a trade-off between their understandabil-
ity and the time required by human interpreters to interpret them [42,90]. Consequently, it
is necessary to comprehend the proper level of transparency, explanation complexity and
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quantity, even in simple cases [91]. Regarding such an aspect, Mishra et al. [47] performed
user studies to understand the proper level of conceptual mapping by means of granularity
and context of the data to generate explanations. The authors discovered that a balance be-
tween coarse and fine-grained explanations help users understand and predict the model’s
behaviour. On the contrary, the usage of structured coarse-grained explanations negatively
impacted user’s trust and performance. While Mishra et al. [47] focused on understanding
the granularity of the explanations, Kumar et al. [92] compared the visual explanations
provided by the proposed visualisation framework with respect to two text-based base-
lines, revealing the effectiveness of their approach in the context of interest through user
experiments. In conclusion, engaging humans in XAI is fundamental, as they are the target
of the explanations and improving our understanding of their behaviour when interacting
with explanations and models is beneficial to improving the design and development of
explanations. Furthermore, it is desirable to design flexible explanation approaches and
explainability methods able to properly convey model behaviour depending on “who" the
human is [91,93,94]. A categorisation of the main user groups is provided by Turró [93].
Depending on their goals, background and relationship with the product, users are grouped in
three categories: developers and AI researchers, domain experts and lay users. The author
discusses the importance of approaching explainable AI in a user-centered manner, pro-
viding tailored explanations based on the needs and characteristics of the targeted group
of users, finally improving affordability and user satisfaction, and easing the explanation
evaluation process. Striving to understand how and why such groups employ explanations
and behave, several researchers have carried out experiments by engaging specific user
groups. Hohman et al. [95] involved professional data scientists to explore how and why
they interpret ML models and how explanations can support answering interpretability-
related questions. More generally, users can be classified as domain or expert users and
non-expert users. Nourani et al. [96] inspected the behaviour of such user groups on their
first impression of an image classification model based on the correctness of its predictions.
They discovered that providing early errors to domain experts decreases their trust, while
early correct predictions help them in adjusting their trust based on their observations
of the system performance. On the other hand, non-expert users relied too much on the
predictions made by the model due to their lack of knowledge. Such over-reliance on the
ML system [6,89,96] highlights how it is always necessary to account for the users engaged
in the system. Moreover, while it is necessary to engage non-expert and end users in the
evaluation of such system, it is also recommended to consider their features, preliminary
knowledge and understanding of the system of interest.

Finally, while explanations were proven to be effective in leading the user in achiev-
ing a task and improving their trust and understanding of the model, it has also been
demonstrated that sometimes they are either not able to improve [97,98] or, worse, they
reduce human accuracy and trust [99]. A similar result in a different context was found by
Dinu et al. [100]. They focused on post hoc feature attribution explanations and discovered
that such explanations provide marginal utility in our task for a human decision maker and, in
certain cases, result in worse decisions due to cognitive and contextual confounders. Such find-
ings bring forth a fundamental conclusion. Even though explanations and explainability
methods may improve users’ understanding, accuracy and trust [101], it is still necessary
to investigate the way humans perceive such content with respect to the context, the model
and the task it performs.

4.4. Human Knowledge as a Mean to Improve Explanations

As faithful explanations provide meaningful insights into the behaviour of models, re-
searchers have designed novel and effective methods to employ such content to improve the
explainability and performance of models. Such human-in-the-loop approaches mainly display
the explanations and the outcomes of a model to humans who are then asked to discover
undesired behaviours (i.e., debugging the model) and to provide possible corrections. The effec-
tiveness of such explainability-focused approaches is discussed by Ferguson et al. [102] They
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report on the usefulness of explanations for human–machine interaction, while stating that
augmenting explanations to support human interaction enhances their utility, creating a com-
mon ground for meaningful human–machine collaboration. They experienced the effectiveness
of editable explanations, consequently modifying the machine learning system to adapt its
behaviour to produce interpretable interfaces. Many examples of approaches that make use of
such a strategy can be found in the literature. Mitsuhara et al. [48] proposes a novel framework
to optimise and improve the explainability of models by using a fine-tuning method to embed
human knowledge—collected as single-channel attention maps manually edited by human
experts—in the system. They reveal that improving the model’s explainability also contributes
to a performance improvement. Coma et al. [103] designed an iterative, human-in-the-loop
approach aimed at improving both the performance and the explainability of a supervised
model detecting non-technical losses. In particular, each iteration improves (or at least does
not deteriorate) the performance and reduces the complexity of the model to improve its inter-
pretability. Kouvela et al. [104] implemented Bot-Detective, a novel explainable bot-detection
service offering interpretable, responsible AI-driven bot identification, focused on efficient
detection and interpretability of the results. Users can provide feedback on the estimated score
and the quality of the results’ interpretation, while specifying their agreement and describing
eventual improvements of the explanations provided through LIME [19]. Such an approach
not only improves the explainability of the model, but also contributes to the performance of
the model itself. Collaris et al. [105] introduced an interactive explanation system to explore,
tune and improve model explanations. The tool allows stakeholders to tune explanation-related
parameters to meet their preferences while they employ such evidence to diagnose the model
and discover eventual model or explanation improvements. Yang et al. [106] addresses the prob-
lem of generalisability by allowing users to co-create and interact with the model. The authors
introduced RulesLearner, a tool able to express ML models as rules, while allowing users to
interact with and update the patterns learned. Their studies demonstrated the effectiveness
of the proposed approach in improving the generalisability of the analysed system and the
quality of the explanations employed in the process. In the presented systems, users directly
interact with the explanations of the model to improve their explainability. Other studies collect
and employ human rationales [107] or domain knowledge [108,109] to achieve the same goal.
Arous et al. [107] introduced MARTA, a Bayesian framework for explainable text classification.
Such a system integrates human rationales into attention-based models to improve their explain-
ability. Confalonieri et al. [108] evaluated how ontologies can be used to improve the human
understandability of global post hoc explanations, presented as decision trees. The proposed
algorithm enhances the explanation extracted using domain knowledge modelled as ontologies.
While sometimes increasing the performance of the model is a side effect of improving its
explainability [48,103–105], a few researchers employed explanations as a means to directly
improve model performance [49,110,111]. Li et al. [49] collected human feedback, made of
a rating label and a textual explanation describing the quality of the answer, to improve the
performance and the capability of explaining the correctness of the outcome of a BERT-based
Question Answering model. While [49] employed human feedback, Spinner et al. [111] en-
gaged humans in a conceptual framework focused on practicability, completeness and full
coverage to operationalise interactive and explainable machine learning. The most relevant
element of the system is the Explainable AI pipeline which maps the explainability process
to an iterative workflow that allows users to understand and diagnose the system to refine
and optimise the model. Differently from the methods presented, Hadash et al. [112] did not
design a human-in-the-loop approach. Instead, they applied “positive framing” and improved
“semantic labelling” to explanations—extracted through SHAP [20] or LIME [19]—to enhance
model-agnostic explainable AI tools.

Another process benefiting from faithful explanations is model debugging. Such an
activity employs human knowledge and expertise to identify errors, bias and improper
behaviours in models with the final objective of correcting them, consequently improving
the model [113] and/or its explanations. The main concept on which model debugging is
based is the interactive exploration of models [80,114,115] by means of an interface able to
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summarise its behaviour. Moreover, allowing users to interact with explanations produce
an even deeper understanding of the model behaviour, consequently improving their
capability to identify potential bugs. In this specific scenario, providing faithful, complete
and understandable explanations is extremely important as they influence the capability
of users of identifying such errors and the soundness of the results. With the final aim
of understanding the model’s failures, Nushi et al. [116] implemented Pandora, a system
leveraging human and system-generated observations to describe and explain when and
how ML systems fail. The tool employs content-based views (i.e., views creating a mapping
between input and the overall system’s failure) to explain when the system fails while
component-based views (i.e., views modelling how internal model dynamics lead to errors)
explain how the system fails. Crowdsourced human knowledge is employed for a variety
of purposes, such as system evaluation, content data collection and component quality
features data collection. Liu et al. [117] describe an error detection framework for sentiment
analysis models based on explainable features employing a variety of explanations. Their
approach is organised in four different units, namely, a “local-level feature contributions”
module extracting unigram features through LIME [19], a “global-level feature contribu-
tions” module performing perturbation-based analyses by masking individual features of
the training samples, a “human assessment” module asking humans to assess the most
relevant globally contributing features learned from the previous step, and a “global-local
integration” module that quantifies the erroneous probabilities of instance-level predictions
made by the model. Even though providing a wide variety of interactive explanations may
contribute to improving the debugging of ML systems, it is still unclear which ones are the
most useful. Seeking to answer such a question, Balayn et al. [118] developed an interactive
design probe that provides various explainability functionalities in the context of image
classification models. They discovered that common explanations are primarily used due
to their simplicity and familiarity while other types of explanation, e.g., domain knowledge,
global, textual, active, interactive, and binary explanations are still useful to achieve a
variety of objectives. Such conclusions support and highlight the importance of presenting
diverse explanations. Using explanations as a means to debug models could also benefit
the explanations themselves. For example, Afzal et al. [119] described a human-in-the-loop
explainability framework to debug data issues to enhance interpretability and facilitate
informed remediation actions. In conclusion, the variety of human-in-the-loop approaches
presented demonstrates that human knowledge can be a valuable asset even for tasks
that do not employ it as structured data and directly engage humans in the process of
understanding, fixing and optimizing ML models.

5. Conclusions

In this article, we presented an overview of the last five years of literature about
explainability and Explainable AI, framed from the human perspective and focused on
human-in-the-loop approaches and techniques employing human knowledge to achieve
their goals. We argue that human knowledge is not necessarily associated with the notion
of data, but also with the capability of humans to accomplish tasks and the reasoning
they apply i.e., human rationale. We cover explainability-related topics employing such
knowledge in a wide variety of ways, e.g., training data, explainability evaluation, model
and explainability improvement, etc. We argue that humans and their knowledge play a
fundamental role in the field of Explainable AI. In particular, improving and assessing the
interpretability of models is a task requiring active human involvement. The same is true
for model debugging. Recent studies have focused on the human’s side of explainability,
focusing on comprehending how to shape explanations to make them more interpretable
and how humans employ and understand them. Such studies are of fundamental impor-
tance in this research field, as humans are not (only) “data sources” for our models, but
also the targets of the explanations and the models we strive to improve and refine.

Many questions are yet to be answered in this research field. We argue that one of the
most fundamental and complex ones is the proper way of structuring explanations with
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respect to the users and the context. Moreover, while a variety of explainability methods
and models are available in the literature, the choice of which one to employ is still at
the centre of discussion. Answering such questions requires accounting for the intrinsic
complexity of humans and the context in which they are put. In conclusion, we argue that
humans and their knowledge are both the reason for the existence of this research field
and the solution to many of the complex questions under active research. Future research
in the field of Explainable AI and Explainability should focus their efforts on developing
heuristics and methods to (1) properly evaluate and compare model explainability, i.e., able
to consider a variety of aspects both related with models and humans (e.g., faithfulness
and interpretability), (2) design generalisable methods able to deal with a wide variety of
contexts and models, and (3) explore the intrinsic complexity associated with humans’ and
models’ contexts.
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Appendix A

In this part of the appendix, we describe the queries performed on the different
bibliographic databases analysed.
The queries performed on Scopus abide by the following structure:
TITLE-ABS-KEY (“Explainability-related Keyword” AND “Knowledge-related Keyword”) AND
LIMIT-TO(SUBJAREA , “COMP”) AND PUBYEAR > 2016.
The queries performed on Google Scholar through Publish or Perish 8.2.3944.8118 were
performed by properly compiling the dedicated fields in the application, namely

• Years: 2017–2022;
• Title words: NOT Survey NOT Review NOT Systematic;
• Keywords: “Explainability-related Keyword”, “Knowledge-related Keyword”.

All the pairs containing an Explainability-related Keyword and Knowledge-related Keyword
were queried.
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